publication . Article . 2016

Algorithm for detection of overlapped red blood cells in microscopic images of blood smears

Romero-Rondón, Miguel Fabián; Sanabria-Rosas, Laura Melissa; Bautista-Rozo, Lola Xiomara; Mendoza-Castellanos, Alfonso;
Open Access Spanish; Castilian
  • Published: 01 Sep 2016
  • Publisher: DYNA
Abstract
The hemogram is one of the most requested medical tests as it presents details about the three cell series in the blood: red series, white series and platelet series. To make some diagnostics, the specialist must undertake the test manually, observing the blood cells under the microscope, which implies a great physical effort. In order to facilitate this work, different digital image processing techniques to detect and classify red blood cells have been proposed. However, a common problem is the presence of overlapped cells, which generate various flaws in the analysis. Therefore, the implementation of an algorithm to address the problem of red blood cells overl...
Subjects
free text keywords: Ingeniería y Tecnología, Ingenierías Eléctrica, Electrónica e Informática, Ingeniería de Sistemas y Comunicaciones, digital image processing, k-means, Hough, hematology, overlap, Hough; k-means, red blood cells, watershed, Procesamiento digital de imágenes, hematología, superposición, glóbulos rojos
39 references, page 1 of 3

Rogers, K., Blood: Physiology and Circulation. New York: Britannica Educational, 2010

New Delhi: Jaypee Brothers Publishers, 2001.

Estridge, B., Basic Medical Laboratory Techniques. Clifton Park: Cengage Learning, 2000.

Missouri: Elsevier Health Sciences, 2007.

Ruiz, G., Fundamentos de hematología. Buenos Aires: Ed. Médica Panamericana, 1994.

Kothari, S., Chaudry, Q. and Wang, M., Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques, Biomedical Imaging: From Nano to Macro, 2009. pp. [OpenAIRE]

795-798. DOI: 10.1109/ISBI.2009.5193169

Cloppet, F. and Boucher, A., Segmentation of complex nucleus configurations in biological images. Pattern Recognition Letters, 31(8), pp. 755-761, 2010. DOI: 10.1016/j.patrec.2010.01.022 Sharif, J., et al., Red blood cell segmentation using masking and watershed algorithm: A preliminary study, Biomedical Engineering (ICoBE), 2012. pp. 258-262. DOI: 10.1109/ICoBE.2012.6179016 [OpenAIRE]

[9] Veta, M., et al., Marker-controlled watershed segmentation of nuclei in H&E stained breast cancer biopsy images, Biomedical Imaging: From Nano to Macro, 2011. pp. 618-621. DOI: 10.1109/ISBI.2011.5872483 [OpenAIRE]

[10] Xu, S., Liu, H. and Song, E., Marker-controlled watershed for lesion segmentation in mammograms. Journal of Digital Imaging, 24(5), pp. 754-763, 2011. DOI: 10.1007/s10278-011-9365-2 [OpenAIRE]

[11] Di Cataldo, S. et al.. Automated segmentation of tissue images for computerized IHC analysis. Computer Methods and Programs in Biomedicine, 100(1), pp. 1-15, 2010. DOI: 10.1016/j.cmpb.2010.02.002

[12] Karvelis, P., Likas, A. and Fotiadis, D., Identifying touching and overlapping chromosomes using the watershed transform and gradient paths. Pattern Recognition Letters, 31(16), pp. 2474-2488, 2010. DOI: 10.1016/j.patrec.2010.08.002

[13] Wen, Q., Chang, H. and Parvin, B., A Delaunay triangulation approach for segmenting clumps of nuclei, Biomedical Imaging: From Nano to Macro, 2009. pp. 9-12. DOI: 10.1109/ISBI.2009.5192970 [OpenAIRE]

[14] Kumar, S. et al., A rule-based approach for robust clump splitting. Pattern Recognition, 39(6), pp. 1088-1098, 2006. DOI: 10.1016/j.patcog.2005.11.014

[15] Wang, H., Zhang, H. and Ray, N., Clump splitting via bottleneck detection and shape classification. Pattern Recognition, 45(7), pp. 2780-2787, 2012. DOI: 10.1016/j.patcog.2011.12.020

39 references, page 1 of 3
Any information missing or wrong?Report an Issue