publication . Article . Other literature type . 2012

Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión

Luis Alfonso Caicedo Mesa; Carlos A.M. Riascos; Luz Dary Carreño Pineda;
Open Access
  • Published: 30 Nov 2012 Journal: Ingeniería y Ciencia, volume 8, pages 307-335 (issn: 1794-9165, eissn: 2256-4314, Copyright policy)
  • Publisher: Universidad EAFIT
  • Country: Colombia
Bacterial cellulose is a polymer obtained by fermentation with microorganisms from Acetobacter, Rhizobium, Agrobacterium and Sarcina genera. Amongthem, Acetobacter xylinum is the most efficient specie. This polymer has the same chemical composition of plant cellulose, but its conformation and physicochemical properties are different, making it attractive for several applications, especially in the areas of food, separation processes, catalysis and health, due to its biocompatibility. However, the main problem is the production in mass that is constrained by low yield. It is therefore necessary to develop some alternatives. This paper presents a review about synthes...
free text keywords: Static Culture, Airlift Reactor, Tissue Engineering, Cellulose Membrane, Celulosa Bacteriana, Cultivo Estático, Reactor Aéreo, Ingeniería De Tejidos, Membrana De Celulosa, Fermentación Estática, Reactor Airlift, Membranas de celulosa., Technology, T, Science, Q, Science (General), Q1-390, Membranas de celulosa, Fermentation, Chemistry, Sarcina, biology.organism_classification, biology, Acetobacter xylinum, Process scaling, Food science, Bacterial cellulose, chemistry.chemical_compound, Agrobacterium, Acetobacter, Cellulose
Related Organizations
128 references, page 1 of 9

[1] R. Jonas, L. Farah “Production and applications of microbial cellulose.” Polymer Degradation ans Stability, vol. 59, pp. 101 - 106, 1998. Referenciado en 308, 309, 311

[2] E. Vandamme, S. De Baets, A. Vanbalaen, K. Joris, P. De Wulf. “Improved production of bacterial cellulose and its application potential” Polymer Degradation and Stability, vol. 59, pp. 93 - 99, 1998. Referenciado en 308 [OpenAIRE]

[3] J. Mathews, C. Skopec, P. Manson, P. Zuccato, R. Torget, J. Sugiyama, M. Himmel, J. Brady. “Computer Simulation studies of microcrystalline cellulose Ib.” Carbohydrate Research., vol. 341 no. 1, pp.138 - 152, 2006. Referenciado en 308 [OpenAIRE]

[4] A. O'Sullivan “Cellulose: The structure slowly unravels.” Cellulose, vol. 4 no. 3, pp. 173 - 207, 1997. Referenciado en 308

[5] M. Akerholm, y L. Salmén. “Dynamic FT-IR Spectroscopy for carbohydrate analysis of wood pulps.” Journal of Pulp and Paper Science, vol. 28 no. 7, pp. 245 - 249, 2002. Referenciado en 308

[6] M. Akerholm, M, B. Hinterstoisser, L. Salmén. “Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy” Carbohydrate Research., vol. 339 no. 3, pp. 569 - 578, 2004. Referenciado en 308 [OpenAIRE]

[7] S. Bielecki, A. Krystynowicz, M. Turkiewicz, H. Kalinowska. “Bacterial Cellulose” Biopolymers online., 2005. Referenciado en 309, 310, 311, 312

[8] W. Dudman “Cellulose production by Acetobacter acetigenum and other Acetobacter spp”. Journal of General Microbiology., vol. 21 no. 2, pp. 312 - 326, 1959. Referenciado en 309, 314 [OpenAIRE]

[9] J. Jung, J. Park, H. Chang. “Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells”. Enzyme and Microbial Technology., vol. 37 no. 3, pp. 347 - 354, 2005. Referenciado en 310

[10] S. Keshk. “Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate”. Enzyme and Microbial Technology, vol. 40 no. 1, pp. 9- 12, 2006. Referenciado en 310 [OpenAIRE]

[11] V. Duvey, C. Saxena, L. Singh, K. Ramana, R. Chauhan. “Pervaporation of binary water - ethanol mixtures through bacterial cellulose membrane”. Separation and Purification Technology, vol. 27 no. 3, pp. 163 - 171, 2002. Referenciado en 310, 321

[12] T. Oikawa, T. Ohtori, M. Ameyama. “Production of cellulose from D. mannitol by Acetobacter xylinum KU - 1”. Bioscience, Biotechnology, and Biochemistry, vol 59 no. 2, pp 331 - 332, 1995. Referenciado en 310

[13] M. Ishihara, m. Matsunaga, N. Hayashi, V. Tisler. “Utilization of D - xylose as carbon source for production of bacterial cellulose”. Enzyme and Microbial Technology., vol. 31 no. 7, pp. 986 - 991, 2002. Referenciado en 310 [OpenAIRE]

[14] S. Keshk, K. Sameshima. “Evaluation of different carbon sources for bacterial cellulose production”. African Journal of Biotechnology., vol. 4 no. 6, pp. 478 - 482, 2005. Referenciado en 310

[15] P. Chawla, I. Bajaj, S. Survase, R. Singhal. “Microbial Cellulose: Fermentative production and applications”. Food Technology and Biotechnology., vol. 47 no. 2, pp. 107 - 124, 2009. Referenciado en 310, 319

128 references, page 1 of 9
Any information missing or wrong?Report an Issue