Relacionando las distribuciones binomial negativa\\ y logarítmica vía sus series asociadas

Article English OPEN
  • Publisher: Departamento de Estadística - Universidad Nacional de Colombia.
  • Subject: series convergentes | Power series distributions | Convergent series | distribución de series de potencias | Negative binomial distribution | distribución binomial negativa | distribución logarítmica | Logarithmic series distribution

The negative binomial distribution is associated to the series obtained by taking derivatives of the logarithmic series. Conversely, the logarithmic series distribution is associated to the series found by integrating the series associated to the negative binomial distr... View more
  • References (11)
    11 references, page 1 of 2

    Anscombe, F. J. (1950), 'Sampling Theory of the Negative Binomial and Logarithmic Series Distributions', Biometrika 37(3/4), 358-382.

    Apostol, T. M. (1988), Calculus, second edn, Reverté.

    Casella, G. & Berger, R. L. (2002), Statistical Inference, second edn, Duxbury Thomson Learning, Pacific Grove, United States.

    Fisher, R. A., Corbet, A. S. & Williams, C. B. (1943), 'The Relation between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population', The Journal of Animal Ecology 12(1), 42-58.

    Khatri, C. G. (1959), 'On Certain Properties of Power-Series Distributions', Biometrika 46(3/4), 486-490.

    Leemis, L. M. & McQueston, J. T. (2008), 'Univariate Distribution Relationships', The American Statistician 62(1), 45-53.

    Noack, A. (1950), 'A Class of Random Variables with Discrete Distributions', The Annals of Mathematical Statistics 21(1), 127-132.

    Ord, J. K. (1967), 'Graphical Methods for a Class of Discrete Distributions', Journal of the Royal Statistical Society 130(2), 232-238.

    Patil, G. P. (1962), 'On Homogeneity and Combined Estimation for the Generalized Power Series Distribution and Certain Applications', Biometrics 18(3), 365-374.

    Quenouille, M. H. (1949), 'A Relation between the Logarithmic, Poisson, and Negative Binomial Series', Biometrics 5(2), 162-164.

  • Metrics
Share - Bookmark