Biocompatibilidad de Condrocitos Humanos Cultivados Sobre un Hidrogel a Base de Quitosano/Alcohol Polivnílico/Epiclorhidrina para Aplicación en Ingeniería de Tejidos

Article English OPEN
Melgarejo-Ramírez, Yaaziel; Sánchez-Sánchez, Roberto; García-Carvajal, Zaira; García-López, Julieta; Gutiérrez-Gómez, Claudia; Luna-Barcenas, Gabriel; Ibarra, Clemente; Velasquillo, Cristina;
(2014)
  • Publisher: Sociedad Chilena de Anatomía
  • Subject: Chitosan hydrogel | Cartílago elástico | Tissue engineering | Biocompatibility | Elastic cartilage | Auricular reconstruction | Biocompatibilidad | Ingeniería de tejidos | Reconstrucción auricular | Hidrogel quitosano

Tissue engineering (TE) has become an alternative for auricular reconstruction based on the combination of cells, molecular signals and biomaterials. Scaffolds are biomaterials that provide structural support for cell attachment and subsequent tissue development. Ideall... View more
  • References (25)
    25 references, page 1 of 3

    Akiyama, H.; Chaboissier, M. C.; Martin, J. F.; Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev., 16(21):2813-28, 2002.

    Di Martino, A.; Sittinger, M. & Risbud, M. V. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26(30):5983-90, 2005.

    Dorj, B.; Won, J. E.; Kim, J. H.; Choi, S. J.; Shin, U. S. & Kim, H. W. Robocasting nanocomposite scaffolds of poly(caprolactone)/ hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. J. Biomed. Mater. Res. A, 101(6):1670-81, 2013.

    Eyre, D. R. & Muir, H. The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig. Biochem. J., 151(3):595-602, 1975.

    Gao, W.; Lai, J. C.; & Leung, S. W. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Front. Physiol., 3:321, 2012.

    Garnica-Palafox, I. M.; Sánchez-Arévalo, F. M.; Velasquillo, C.; GarcíaCarvajal, Z. Y.; García-López, J.; Ortega-Sánchez, C.; Ibarra, C.; LunaBárcenas, G. & Solís-Arrieta, L. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly (vinyl alcohol) crosslinked with epichlorohydrin for potential use in tissue engineering. J. Biomater. Sci. Polym. Ed., 25(1):32-50, 2014.

    Hutmacher, D. W.; Goh, J. C. & Teoh, S. H. An introduction to biodegradable materials for tissue engineering applications. Ann. Acad. Med. Singapore, 30(2):183-91, 2001.

    Kobayashi, S.; Takebe, T.; Inui, M.; Iwai, S.; Kan, H.; Zheng, Y. W.; Maegawa, J. & Taniguchi, H. Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium. Proc. Natl. Acad. Sci. USA, 108(35):14479-84, 2011.

    Kusuhara, H.; Isogai, N.; Enjo, M.; Otani, H.; Ikada, Y.; Jacquet, R.; Lowder, E. & Landis, W. J. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen., 17(1):136- 46, 2009.

    Lafont, J. E.; Talma, S.; Hopfgarten, C. & Murphy, C. L. Hypoxia promotes the differentiated human articular chondrocyte phenotype through SOX9-dependent and -independent pathways. J. Biol. Chem., 283(8):4778-86, 2008.

  • Similar Research Results (1)
  • Metrics
Share - Bookmark