publication . Article . 2015

Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment

Caldeŕon-Ramón, C.; J.F. Gómez-Aguilar; Rodríguez-Achach, M.; Morales- Mendoza, L. J.; Laguna-Camacho, J. R.; Benavides-Cruz, M.; Cruz-Orduna, M. I.; González-Lee, M.; Pérez-Meana, H.; Enciso-Aguilar, M.; ...
  • Published: 01 Oct 2015
Abstract
In this paper we present a computational electromagnetic simulation of a multiform diffractor placed at the center of an antenna array. Our approach is to solve Maxwell's differential equations with a discrete space-time formulation, using the Finite Difference Time Domain (FDTD) method. The Perfectly Matched Layers (PML) method is used as an absorbing boundary condition, to prevent further spread of the electromagnetic wave to the outside of the calculation region. The Perfect Electric Conductor (PEC) boundary conditions are used to represent the periphery of the region and the diffractor. The system consists of an antenna array of 20 elements: a transmission a...
Subjects
free text keywords: Conductor electric perfect conditions (PEC), finite difference time domain method (FDTD), perfectly matched layers (PML), antenna array, diffractor, Conductor eléctrico perfecto (PEC), Método de diferencias finitas en el dominio del tiempo (FDTD), capas perfectamente acopladas (PML), arreglo de antenas, difractor
17 references, page 1 of 2

1. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method 3rd edn. (Artech House, Norwood, MA, 2005). [OpenAIRE]

2. G. Mur, IEEE Trans. Electromagnetic Compatibility 23 (1981) 377.

3. B. Engquist, A. Majda, Math. of Comp. 31 (1977) 629.

4. J. P. Berenger, Journal of Computational Physics 114 (1994) 185.

5. A. Benavides, M. A´ lvarez, M. Enciso, J. Sosa, Analysis of polynomial and geometric conductivity profiles in PML layers: a comparison, Progress in Electromagnetics Research Symposium PIER. (2010).

6. M. Benavides, M. Nieto, M. Enciso, J. Sosa, Applied Mechanics and Materials 15 (2009) 139.

7. M. Benavides et al., Rev. Mex. Fis 57 (2011) 25-31.

8. K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transaction Antennas and Propagation AP-14 (1966) 302-307. [OpenAIRE]

9. D.M. Sullivan, IEEE Press Series on RF and Microwave technology New York (2000).

10. A. Elsherbeni, V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations, SciTechPublishing Inc, Raleigh N.C, USA, (2009), pp. 187- 215.

11. M. Benavides-Cruz, doctoral thesis, SEPI-ESIME IPN, (2011).

12. C.Caldero´n-Ramo´n, doctoral thesis,SEPI-ESIME, IPN, (2015).

13. C. M. Calder o´n, H. M. Pe´rez, A. M. Benavides, L. J. Morales, Desarrollo de un Arreglo Circular de Antenas utilizando herramientas de Electromagnetismo Computacional. Centro de Informacio o´n Tecnolo´gica, 25 (2014) 41-54.

14. M. Lopez, Rev. Mex. Fis E52 (2006) 58-64.

15. A. M Benavides et al., Rev. Mex. Fis E, 57 (2011) 25-31.

17 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2015

Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment

Caldeŕon-Ramón, C.; J.F. Gómez-Aguilar; Rodríguez-Achach, M.; Morales- Mendoza, L. J.; Laguna-Camacho, J. R.; Benavides-Cruz, M.; Cruz-Orduna, M. I.; González-Lee, M.; Pérez-Meana, H.; Enciso-Aguilar, M.; ...