publication . Article . 2013

Chlorine in the stratosphere

NORIYUKI TANAKA; DANNY M. RYE;
Restricted
  • Published: 01 Jun 2013 Journal: Nature, volume 353, pages 707-707 (issn: 0028-0836, eissn: 1476-4687, Copyright policy)
  • Publisher: Springer Nature
Abstract
This paper reviews the various aspects of chlorine compounds in the stratosphere, both their roles as reactants and as tracers of dynamical processes. In the stratosphere, reactive chlorine is released from chlorofluorocarbons and other chlorine-containing organic source gases. To a large extent reactive chlorine is then sequestered in reservoir species ClONO2 and HCl. Re-activation of chlorine happens predominantly in polar winter vortices by heterogeneous reaction in combination with sunlight. Catalytic cycles involving Cl, ClO, BrO, Cl2O2, ClO2 and others like NO, NO2, OH, and HO2 remove odd oxygen (ozone and atomic oxygen) from the atmosphere. Under an ozone...
Subjects
free text keywords: Environmental chemistry, Chemistry, Chlorine, chemistry.chemical_element, Stratosphere, Atmospheric Science, Far infrared, Ozone depletion, Meteorology, Microwave, Atmosphere, Ozone, chemistry.chemical_compound, Infrared
444 references, page 1 of 30

Abbatt J. P. D. and M. J. Molina, 1992. The heterogeneous reaction HOCl + HCl → Cl2 + H2O on ice and nitric acid trihydrate: Reaction probabilities and stratospheric implications. Geophys. Res. Lett. 19, 461-464, doi:10.1029/92GL00373. [OpenAIRE]

Achard V., M. de Mazière, C. Camy-Peyret, F. Karcher and C. Lippens, 1997. Space-borne measurements of the upper stratospheric HCl vertical distribution in early 1992 and the trend in total stratospheric chlorine since 1985. J. Geophys. Res. 102, 8985-8990. [OpenAIRE]

Ackerman M., D. Frimout, A. Girard, M. Gottignies and C. Muller, 1976. Stratospheric HCl from infrared spectra. Geophys. Res. Lett. 3, 81-83, doi:10.1029/ GL003i002p00081. [OpenAIRE]

Adrian G. P., M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann and A. Wegner, 1994. First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE. Geophys. Res. Lett. 21, 1343-1346. [OpenAIRE]

Aellig C. P., N. Kämpfer, C. Rudin, Bevilacqua, W. Degenhardt, P. Hartogh, C. Jarchow, K. Künzi, J. J. Olivero, C. Croskey, J. W. Waters and H. A. Michelsen, 1996. Latitudinal distribution of upper stratospheric ClO as derived from space borne microwave spectroscopy. Geophys. Res. Lett. 23, 2321-2324. [OpenAIRE]

Anderson J. G., J. J. Margitan and D. H. Stedman, 1977. Atomic chlorine and the chlorine monoxide radical in the stratosphere: Three in situ observations. Science 198, 501-503, doi:10.1126/science.198.4316.501. [OpenAIRE]

Anderson J. G., H. J. Grassl, R. E. Shetter and J. J. Margitan, 1980. Stratospheric free chlorine measured by balloon-borne in situ resonance uflorescence . J. Geophys. Res. 85, 2869-2887, doi:10.1029/JC085iC05p02869.

Anderson J. G., W. H. Brune, S. A. Lloyd, D. W. Toohey, S. P. Sander, W. L. Starr, M. Loewenstein and J. R. Podolske, 1989a. Kinetics of O3 destruction by ClO and BrO within the Antarctic vortex: An analysis based on in situ ER-2 data. J. Geophys. Res. 94, 11480-11520.

Anderson J. G., W. H. Brune and M. H. Proffitt, 1989b. Ozone destruction by chlorine radicals within the Antarctic vortex: The spatial and temporal evolution of ClO O3 anticorrelation based on in situ ER-2 data. J. Geophys. Res. 94, 11465-11479, doi:10.1029/ JD094iD09p11465.

Anderson J. G., D. W. Toohey and W. H. Brune, 1991. Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss. Science 251, 39-46, doi:10.1126/science.251.4989.39. [OpenAIRE]

Anderson J. G., D. M. Wilmouth, J. B. Smith and D. S. Sayres, 2012. UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science 337, 835-839, doi:10.1126/ science.1222978. [OpenAIRE]

Andrews A. E., K. A. Boering, B. C. Daube, S. C. Wofsy, E. J. Hintsa, E. M. Weinstock and T. P. Bui, 1999. Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2: Implications for stratospheric transport. J. Geophys. Res. 104, 26581-26595. [OpenAIRE]

Arrhenius S., 1896. On the inuflence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science, Series 5, Vol. 41, 237-276.

Austin J., N. Butchart and K. P. Shine, 1992. Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature 360, 221-225, doi:10.1038/360221a0. [OpenAIRE]

Austin J. and F. Li, 2006. On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air. Geophys. Res. Lett. 33, L17807, doi:10.1029/2006GL026867.

444 references, page 1 of 30
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2013

Chlorine in the stratosphere

NORIYUKI TANAKA; DANNY M. RYE;