Die alpha-Untereinheiten von Ionenkanälen assemblieren durch eine Tetramerisierung von Coiled-Coils

Doctoral thesis German OPEN
Jenke, Marc (2006)
  • Subject: Helix <alpha-> | Ionenkanal | Assembly | Coiled coil | Tetramerisation
    • ddc: ddc:570

Der spannungsabhängige Kaliumkanal EAG1 besitzt eine carboxyterminale 40 Aminosäuren lange Domäne, die für die Assemblierung von vier alpha-Untereinheiten zu einem funktionellen Kanal verantwortlich ist. Die Zielsetzung dieser Arbeit war zunächst die Analyse der Sekundärstruktur dieser Assemblierungsdomäne, sowie die Identifikation weiterer Ionenkanäle, die im Carboxyterminus eine strukturelle Homologie zur Assemblierungsdomäne des EAG1- Ionenkanals zeigen. Darüber hinaus sollten Aussagen über die Bedeutung der Domäne für die Funktion des jeweiligen Ionenkanals getroffen werden. Computergestützte Analysen der Sekundärstruktur ergaben, dass strukturell konservierte homologe Domänen in den Familien der durch zyklische Nukleotide gesteuerten Kationenkanälen (CNG), in den spannungsabhängigen kaliumselektiven Kanälen (neben EAG, auch in ELK, ERG und KCNQ), in den calciumabhängigen Kaliumkanälen (SK, IK), in den nicht selektiven Kationenkanälen (PKD) und in den Calciumkanälen (TRP) zu finden sind. Diese Ionenkanäle zeigen in computergestützten Analysen Domänen, mit einer hohen Wahrscheinlichkeit zur Ausbildung einer Coiled-Coil Struktur im Caboxyterminus. Im zweiten Teil ging es darum, die berechnete Sekundärstruktur experimentell zu belegen. Dazu wurden die caboxyterminal gelegenen Proteinbereiche mit einer Möglichkeit zur Ausbildung eines Coiled-Coils exemplarisch von den Kanälen EAG1, EAG2 und ERG1 als Peptide synthetisiert und analysiert. Anhand von Gelfiltrationsexperimenten und Lichtstreuung wurde die Stöchiometrie der Peptid-Assemblierung als Tetramerisierung identifiziert. Mittels Zirkulardichroismus-Spektroskopie konnte ein hoher alpha-helikaler Strukturanteil und eine außerordentliche Stabilität gegenüber hitzedenaturierenden Bedingungen gezeigt werden. Aus diesen Daten kann, in Übereinstimmung mit computergestützten Analysen der Aminosäuresequenz, geschlossen werden, dass die Peptide zu tetrameren Coiled-Coils assemblieren. In Analogie kann diese Art der Zusammenlagerung ebenfalls für die alpha-Untereinheiten der Ionenkanäle angenommen werden, für die in computergestützten Analysen eine hohe Wahrscheinlichkeit zur Ausbildung eines Coiled-Coils berechnet werden konnte. Die dafür verantwortliche Domäne wurde als „Tetramerisierende Coiled-Coil“ (TCC) Domäne benannt und kann als generelles Strukturmotiv angenommen werden. Im dritten Teil wurde ein auf Oberflächen-Plasmonresonanz basierender Proteininteraktionstest entwickelt, der es ermöglicht, die Kinetik der Tetramerisierung in Echtzeit zu verfolgen. Für die Peptide, deren Aminosäuresequenz der TCC-Domäne eines funktionellen Ionenkanals entsprach, konnte eine Ausbildung homomerer Komplexe gezeigt werden. Eine stabile heterologe Interaktion konnte nur zwischen den aus einer Proteinunterfamilie stammenden Domänen EAG1 und EAG2 gemessen werden. Dagegen interagierten diese Peptide nicht mit der Interaktionsdomäne aus ERG1. Die TCC-Domäne ist demnach in der Lage, die Spezifität der Bindung zu bestimmen. Aufbauend auf den Ergebnissen der Sekundärstrukturanalyse stand nun die Bedeutung der TCC-Domäne für die Funktionalität des jeweiligen Ionenkanals im Zentrum dieser Arbeit. In weiteren Experimenten konnte gezeigt werden, dass der Austausch einer hydrophoben Aminosäure gegen eine polare Aminosäure innerhalb des Coiled-Coils drastische Auswirkungen auf die Funktion dieser ca. 40 Aminosäuren langen Domäne hatte. Diese Peptide lagen nur noch zu einem geringen Anteil als Tetramere vor und wiesen eine deutlich geringere Stabilität gegenüber hitzedenaturierenden Bedingungen auf. Im Proteininteraktionsassay äußerte sich der Einfluss des Austausches in einer rascheren Assoziations- und Dissoziationsphase im Vergleich zu den tetrameren Coiled-Coil Peptiden. In vivo durchgeführte elektrophysiologische Messungen an Ionenkanalkonstrukten bestätigten die physiologische Relevanz der TCC-Domäne. Die Abwesenheit dieser Domäne in HERG1 führte zu einem Verlust der Funktion des Ionenkanals. Diese konnte jedoch durch Klonierung der entsprechenden TCC-Domäne des EAG1-Ionenkanals in den HERG1-Ionenkanal wieder hergestellt werden. Das Ionenkanalkonstrukt, bestehend aus dem HERG1-Kanal mit der TCC-EAG1 Domäne konnte, im Gegensatz zu dem HERG1 Wildtyp, funktionelle Heteromultimere mit EAG1 alpha- Untereinheiten bilden, so dass ein Ionenkanal mit veränderten Eigenschaften elektrophysiologisch beschrieben werden konnte. Die Relevanz der TCC-Domäne für die Funktionalität des Ionenkanals wird auch durch natürlich vorkommende Mutationen belegt. Diese beeinflussen die Struktur und damit die Funktion der TCC-Domäne. In Datenbanken des humanen Genoms konnten 38 Mutationen in sieben verschiedenen Genen identifiziert werden, die die Struktur der Coiled-Coil Domäne der resultierenden Ionenkanäle beeinflussen. Diese Mutationen äußern sich in zahlreichen phänotypischen Krankheitsbildern.
Share - Bookmark