Charakterisierung der alternativen NADH-Ubichinon-Oxidoreduktase (NDH2) aus Yarrowia lipolytica

Doctoral thesis German OPEN
Eschemann, Andrea (2005)
  • Subject:
    • ddc: ddc:570

Neben dem protonenpumpenden Komplex I (NDH-1) der Atmungskette besitzt die obligat aerobe Hefe Yarrowia lipolytica eine alternative NADH:Ubichinon Oxidoreduktase (NDH-2). Diese Enzyme, die in den Atmungsketten von Pflanzen, Pilzen und Bakterien vorkommen, bestehen aus nur einer Untereinheit, führen jedoch dieselbe Reaktion aus wie Komplex I, nämlich die Elektronenübertragung von NADH auf Ubichinon, wobei allerdings keine Protonen über die Membran transloziert werden. Nur peripher mit der Membran assoziiert, können alternative Dehydrogenasen entweder zur cytosolischen Seite (extern) oder zur Matrixseite (intern) orientiert sein. Y. lipolytica besitzt im Gegensatz zu anderen Ascomyceten nur eine einzige extern orientierte alternative Dehydrogenase mit einer vorhergesagten Masse von ca. 60 kD und einem nicht kovalent gebundenem Molekül FAD als Cofaktor. Durch Fusion des Leserasters mit der Präsequenz der 75 kD Untereinheit von Komplex I war die interne Expression des Enzyms (NDH2i) gelungen, die das Überleben von Komplex I Deletionsmutanten ermöglichte. Im Rahmen der vorliegenden Arbeit wurde die alternative Dehydrogenase von Y. lipolytica innerhalb ihrer natürlichen Membranumgebung charakterisiert. Das Enzym reagierte mit verschiedenen Chinonanaloga, wobei mit dem hydrophilen Q1 eine höhere katalytische Rate erzielt wurde als mit DBQ, das dem natürlich vorkommenden Q9 am ähnlichsten ist. Da hydrophobe Substrate fast ausschließlich in der Lipidphase der Membranen gelöst vorliegen, musste bei der Bestimmung von kinetischen Parametern (ebenso wie bei Komplex I) auf eine gleichbleibend große Membranphase im Messvolumen geachtet werden. Mit dem standardmäßig benutzten Substrat DBQ reagierte YLNDH2 nach einem Ping-Pong Reaktionsmechanismus. Dieser beschreibt eine abwechselnde Bindung der beiden Substrate, wobei das Enzym die Elektronen von NADH aufnimmt (E-FADH2) und an Ubichinon weitergibt (E-FAD); es existiert kein ternärer Enzym-Substrat Komplex. Gestützt durch Kristallstrukturen des analogen Enzyms QR1 mit NADPH bzw. mit Durochinon, liegt die Vermutung nahe, dass beide Substrate in ähnlicher Weise und sehr wahrscheinlich in der gleichen Bindungstasche binden. Ein Ping-Pong Reaktionsmechanismus wurde bereits für die NADH:DCPIP Oxidoreduktase Aktivität von zwei weiteren alternativen Enzymen postuliert, jedoch noch nie für ein physiologisches Substrat. Als bislang wirksamster Inhibitor für alternative Dehydrogenasen wurde 1-hydroxy-2-dodecyl-4(1H)chinolon (HDQ) entdeckt. HDQ hemmte NDH2 in Membranen aus Y. lipolytica mit einer I50 von 200 nM, was der 500fachen Hemmwirkung des gängig verwendeten Flavon auf das isolierte Enzym NDI1 von S. cerevisiae entspricht. Allerdings hemmte HDQ auch Komplex I mit einer I50 von 2 µM, ähnlich wie es bei Platanetin in Pflanzenmitochondrien der Fall war [Roberts et al., 1996]. Mit dem Ziel, ein polyklonales Antiserum gegen die native YLNDH2 zu generieren, wurde das Enzym in E. coli heterolog exprimiert. Die Expression führte zur Bildung von Einschlusskörpern, aus denen das rekombinante Enzym unter denaturierenden Bedingungen gereinigt und zur Immunisierung eines Kaninchens verwendet werden konnte. Das Antiserum kreuzreagierte mit der nativen und der internen Version von YLNDH2 und zeigte nur wenige unspezifische Bindungen. Es wurde gezeigt, dass Y. lipolytica Stämme ohne NDH2 und Komplex I mit NDH2i als einziger Dehydrogenase erzeugt werden konnten. In N. crassa war der Versuch, NDE2 und Komplex I gleichzeitig zu deletieren, gescheitert, was zu der Schlussfolgerung führte, dass sich die beiden Enzyme in diesem Organismus möglicherweise kompensieren könnten. Dies war in Y. lipolytica ausgeschlossen worden, da wahrscheinlich kein (oder nur unzureichender) Austausch zwischen matrixständigem und cytosolischem NADH stattfindet. Die zielgerichtete Mutagenese hochkonservierter Bereiche im offenen Leserahmen von YLNDH2 lieferte das eindeutige Ergebnis, dass die zweite der beiden beta-alpha-beta-Bindungsdomänen NADH binden muß, da sich der KM Wert für NADH bei Mutation des essentiellen sauren Restes E320 dratisch erhöhte. Alle Mutationen, die die Dinukleotid Bindungsdomäne I betrafen, die danach folgerichtig den Cofaktor FAD binden muß, führten zu einem vollständigen Verlust von NDH2. Dieselbe Zuordnung der Bindungsstellen war bereits von Björklöf et al. [2000] vorgeschlagen worden. Eine Chinonbindungstelle konnte durch Mutagenese der beiden apolar/aromatischen Bereiche der Sequenz nicht identifiziert werden. Die Modifikation des C-Terminus von NDH2i führte zu nicht mehr messbarer Aktivität und stark verringerter Expression des Enzyms in mitochondrialen Membranen (siehe Anhang 7.5.1.1). Es kann daher vermutet werden, dass der C-Terminus für die korrekte Faltung eine wichtige Rolle spielt, möglicherweise sogar bei der Membranassoziation, wie bei Rasmusson [1999] vorgeschlagen wurde. Interessant war in diesem Zusammenhang, dass die C-terminal modifizierte NDH2i trotzdem das Überleben von Komplex I Deletionsmutanten bzw. das Wachstum auf DQA ermöglichte. In Membranen, die einen unterschiedlichen Gehalt an NDH2, jedoch die gleiche Gesamtmenge an Protein enthielten, wurde eine unerwartete lineare Abhängigkeit zwischen KM und Vmax Werten beobachtet. Dieses Phänomen wurde mit dem Modell der externen Diffusionslimitierung beschrieben, die in ähnlicher Weise auch bei immobilisierten Enzymen auftritt. Danach wird die Geschwindigkeit der enzymatischen Reaktion von YLNDH2 sowohl durch die kinetisch kontrollierte Rate, als auch durch die Transportrate des Ubichinons bestimmt, das aus der Membran heraus in die wässrige Umgebung des katalytischen Zentrums gelangen muss. Aus diesem Grund ist nicht nur die Maximalgeschwindigkeit, sondern auch die Michaelis Menten Konstante KM abhängig vom Gehalt des Enzyms in Membranen. Dies führte bei niedrig exprimierten mutanten Enzymen zur gleichzeitigen Abnahme von KM und Vmax. Eine externe Diffusionskontrolle der enzymatischen Reaktion wurde auch für Komplex I, dessen Reaktionszentrum im peripheren Arm vermutet werden kann, aber nicht für Komplex III aus S. cerevisiae, dessen Chinonbindungsstellen sich definitiv in hydrophober Umgebung befinden, beobachtet.
Share - Bookmark