publication . Other literature type . Doctoral thesis . 2011

Development of a micro-Hall magnetometer and studies of individual Fe-filled carbon nanotubes

Lipert, Kamil;
  • Published: 01 Jan 2011
  • Publisher: Heidelberg University Library
  • Country: Germany
Abstract
This work presents Hall magnetometry studies on individual Fe-filled carbon nanotubes (CNT). For this approach high sensitivity micro Hall sensors based on a GaAs/AlGaAs heterostructure with two dimensional electron gas (2DEG) were developed. Electron beam lithography and wet chemical etching were utilized for patterning Hall sensors onto the heterostructure surface. The devices were characterized by means of scanning electron microscopy, atomic force microscopy and transport measurements. Individual Fe-filled CNTs were placed on active part of devices (800 × 800 nm2) with aid of micromanipulator system. Measurements on an individual iron nanowires confirmed dev...
Subjects
arXiv: Condensed Matter::Materials ScienceCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: 530, 530 Physics
Related Organizations
29 references, page 1 of 2

6.1. Micro Hall studies on an individual straight iron nanowire……............................ 69 6.1.1 Experimental details…………………………………………................................ 69 6.1.2. Hysteresis loop measurements……………………………………….................... 71 6.1.3. Angular dependence of the nucleation fields………………………….................. 73 6.1.4. Temperature dependence of the nucleation fields……………………................... 76 6.1.5. Nucleation field distribution………………………………………........................ 78 6.1.6. Summary and discussion…………………………………………......................... 80 6.2. Micro Hall studies on a bent iron nanowire………………………......................... 82 6.2.1. Experimental details……………………………………………............................ 82 6.2.2. Hysteresis loop measurements……………………………………......................... 83 6.2.3. Temperature dependence of the nucleation fields………………........................... 85 6.2.4. Angular dependence of the nucleation fields…………………............................... 86 6.2.5. Biasing of the hysteresis loops…………………………………............................. 90 6.2.6. Summary and discussion………………………………………............................. 96 7.

List of publications..................................................................................................... 1. K. Lipert, S. Bahr, F. Wolny, P. Atkinson, U. Weißker, T. Mühl, O. Schmidt, B.

Büchner, R. Klingeler, Individual carbon-coated iron-nanowire probed by Micro Hall magnetometry, Applied Physics Letters 97, (2010) 212503, 2. K. Lipert, F. Kretzschmar, M. Ritschel, A. Leonhardt, R. Klingeler, B. Büchner, Nonmagnetic carbon nanotubes, J. Appl. Phys. 105, (2009) 063906, 3. K. Lipert, M. Ritschel, A. Leonhardt, Y. Krupskaya, B. Büchner, R. Klingeler., Magnetic properties of carbon nanotubes with and without catalysts. J. Phys.: Conf. Ser. 200, (2010) 072061, 4. M. U. Lutz, K. Lipert, Y. Krupskaya, S. Bahr, A. Wolter, A. A. El-Gendy, S.

Hampel, A. Leonhardt, A. Taylor, K. Krämer, B. Büchner, R. Klingeler, Feasibility of magnetically filled CNT for biological applications: From fundamental properties of individual nanomagnets to nanoscaled heaters and temperature sensors. Book chapter, Springer-Verl., 2011, 97-124 (2011). 5. A. Taylor, K. Lipert, K. Kraemer, S. Hampel, S. Fuessel, A. Meye, R. Klingeler, M. Ritschel, A. Leonhardt, B. Buechner, M.P. Wirth Biocompatibility of iron filled carbon nanotubes in vitro, Journal of Nanoscience and Nanotechnology 9 (2009) 5709, 6. E. Heister, V. Neves, C. Tîlmaciu, K. Lipert, V. Sanz Beltrán, H. Coley, S. R. P.

Silva and J. McFadden, Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy, Carbon 47, (2009) 2151, 7. F. Wolny, T. Mühl, U. Weissker, K. Lipert, J. Schumann, A. Leonhardt and B.

Büchner, Iron filled carbon nanotubes as novel high resolution probes for quantitative magnetic force microscopy. Nanotechnology 21, (2010) 435501, [1] http://www.zyvex.com/nanotech/feynman.html, [2] A. D. Kent, S. von Molnár, S. Gider, D. D. Awschalom, Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays (invited), J.

Appl. Phys. 76, (1994) 6656, [3] L. Theil Kuhn, A.K. Geim, J.G.S. Lok, P. Hedegärd, K. Ylänen, J.B. Jensen, E.

Johnson and P.E. Lindelof, Magnetisation of isolated single crystalline Fe-nanoparticles measured by a ballistic Hall micro-magnetometer, Eur. Phys. J. D 10, (2000) 259, [4] S. Iijima, Curling and closure of graphitic networks under electron-beam irradiation, Nature 359, (1992) 707, [5] C. Guerret-Piécourt, Y. Le Bouar, A. Loiseau, H. Pascard, Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, Nature 372, (1994) 76, [6] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G.

Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science 273, (1996) 483, [7] A. Leonhardt, S. Hampel, C. Mueller, I. Moench, R. Koseva, M. Ritschel, D. Elefant, K. Biedermann, B. Buechner, Synthesis, properties and applications of ferromagneticfilled carbon nanotubes, Chemical Vapor Deposition 12, (2006) 380, [8] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, L.

Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A 69, (1999) 255, [9] S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, A simple chemical method of opening and filling carbon nanotubes, Nature 372, (1994) 159, [10] F. Qiang, G. Weinberg, S. Dang-sheng, Selective filling of carbon nanotubes with metals by selective washing, New Carbon Materials 23, (2008) 17, [11] K. Schulte1, C. Yan, M. Ahola-Tuomi, A. Strozecka, P. J. Moriarty, A. N.

Khlobystov, Journal of Physics: Conference Series 100, (2008) 012017, [12] M. Monthioux, Filling single-wall carbon nanotubes. Carbon 40, (2002) 1809, [13] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes, Chem. Rev. 106, (2006) 1105, [14] K. Balasubramanian, M. Burghard, Chemically Functionalized Carbon Nanotubes, Small 1, (2005)180, [15] C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics, Biochim. Biophys. Acta, 1758 (2006) 404, [16] I. Moench, A. Meye, A. Leonhardt, K. Kraemer, R. Kozhuharova, T. Gemming, M.P. Wirth, B. Buechner, Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells, J. Magn. Magn. Mater.

290-291 (2005) 276, [17] H. Jin, D. A. Heller, M. S. Strano, Single-Particle Tracking of Endocytosis and Exocytosis of Single-Walled Carbon Nanotubes in NIH-3T3 Cells, Nano Lett. 8, (2008) 1577, [18] A. Taylor, Y. Krupskaya, K. Krämer, S. Füssel, R. Klingeler, B. Büchner, M. P.

Wirth, Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia, Carbon 48, (2010) 2327, [19] L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology, J. Contr. Rel. 58, (1460) 2006, [20] Y. Krupskaya, C. Mahn, A. Parameswaran, A. Taylor, K. Krämer, S.Hampel, A.

Leonhardt, M. Ritschel, B. BÄuchner, R. Klingeler, Magnetic study of iron-containing carbon nanotubes: feasibility for magnetic hyperthermia, J. Magn. Magn. Mater. 321, (2009) 4067, [21] A. P. Shpak, S.P. Kolesnik, G. S. Mogilny, Y. N. Petrov, V. P. Sokhatsky, L.N.

Trophimova, B. D. Shanina, V. G. Gavriljuk, Structure and magnetic properties of iron nanowires encased in multiwalled carbon nanotubes, Acta Materialia 55, 1769 (2007), [22] F. Geng, H. Cong, Fe-filled carbon nanotube array with high coercivity, Physica B 382, 300 (2006), [26] W. Heisenberg, Many-Body Problem and Resonance in Quantum Mechanics, Z.

29 references, page 1 of 2
Abstract
This work presents Hall magnetometry studies on individual Fe-filled carbon nanotubes (CNT). For this approach high sensitivity micro Hall sensors based on a GaAs/AlGaAs heterostructure with two dimensional electron gas (2DEG) were developed. Electron beam lithography and wet chemical etching were utilized for patterning Hall sensors onto the heterostructure surface. The devices were characterized by means of scanning electron microscopy, atomic force microscopy and transport measurements. Individual Fe-filled CNTs were placed on active part of devices (800 × 800 nm2) with aid of micromanipulator system. Measurements on an individual iron nanowires confirmed dev...
Subjects
arXiv: Condensed Matter::Materials ScienceCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: 530, 530 Physics
Related Organizations
29 references, page 1 of 2

6.1. Micro Hall studies on an individual straight iron nanowire……............................ 69 6.1.1 Experimental details…………………………………………................................ 69 6.1.2. Hysteresis loop measurements……………………………………….................... 71 6.1.3. Angular dependence of the nucleation fields………………………….................. 73 6.1.4. Temperature dependence of the nucleation fields……………………................... 76 6.1.5. Nucleation field distribution………………………………………........................ 78 6.1.6. Summary and discussion…………………………………………......................... 80 6.2. Micro Hall studies on a bent iron nanowire………………………......................... 82 6.2.1. Experimental details……………………………………………............................ 82 6.2.2. Hysteresis loop measurements……………………………………......................... 83 6.2.3. Temperature dependence of the nucleation fields………………........................... 85 6.2.4. Angular dependence of the nucleation fields…………………............................... 86 6.2.5. Biasing of the hysteresis loops…………………………………............................. 90 6.2.6. Summary and discussion………………………………………............................. 96 7.

List of publications..................................................................................................... 1. K. Lipert, S. Bahr, F. Wolny, P. Atkinson, U. Weißker, T. Mühl, O. Schmidt, B.

Büchner, R. Klingeler, Individual carbon-coated iron-nanowire probed by Micro Hall magnetometry, Applied Physics Letters 97, (2010) 212503, 2. K. Lipert, F. Kretzschmar, M. Ritschel, A. Leonhardt, R. Klingeler, B. Büchner, Nonmagnetic carbon nanotubes, J. Appl. Phys. 105, (2009) 063906, 3. K. Lipert, M. Ritschel, A. Leonhardt, Y. Krupskaya, B. Büchner, R. Klingeler., Magnetic properties of carbon nanotubes with and without catalysts. J. Phys.: Conf. Ser. 200, (2010) 072061, 4. M. U. Lutz, K. Lipert, Y. Krupskaya, S. Bahr, A. Wolter, A. A. El-Gendy, S.

Hampel, A. Leonhardt, A. Taylor, K. Krämer, B. Büchner, R. Klingeler, Feasibility of magnetically filled CNT for biological applications: From fundamental properties of individual nanomagnets to nanoscaled heaters and temperature sensors. Book chapter, Springer-Verl., 2011, 97-124 (2011). 5. A. Taylor, K. Lipert, K. Kraemer, S. Hampel, S. Fuessel, A. Meye, R. Klingeler, M. Ritschel, A. Leonhardt, B. Buechner, M.P. Wirth Biocompatibility of iron filled carbon nanotubes in vitro, Journal of Nanoscience and Nanotechnology 9 (2009) 5709, 6. E. Heister, V. Neves, C. Tîlmaciu, K. Lipert, V. Sanz Beltrán, H. Coley, S. R. P.

Silva and J. McFadden, Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy, Carbon 47, (2009) 2151, 7. F. Wolny, T. Mühl, U. Weissker, K. Lipert, J. Schumann, A. Leonhardt and B.

Büchner, Iron filled carbon nanotubes as novel high resolution probes for quantitative magnetic force microscopy. Nanotechnology 21, (2010) 435501, [1] http://www.zyvex.com/nanotech/feynman.html, [2] A. D. Kent, S. von Molnár, S. Gider, D. D. Awschalom, Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays (invited), J.

Appl. Phys. 76, (1994) 6656, [3] L. Theil Kuhn, A.K. Geim, J.G.S. Lok, P. Hedegärd, K. Ylänen, J.B. Jensen, E.

Johnson and P.E. Lindelof, Magnetisation of isolated single crystalline Fe-nanoparticles measured by a ballistic Hall micro-magnetometer, Eur. Phys. J. D 10, (2000) 259, [4] S. Iijima, Curling and closure of graphitic networks under electron-beam irradiation, Nature 359, (1992) 707, [5] C. Guerret-Piécourt, Y. Le Bouar, A. Loiseau, H. Pascard, Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, Nature 372, (1994) 76, [6] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G.

Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science 273, (1996) 483, [7] A. Leonhardt, S. Hampel, C. Mueller, I. Moench, R. Koseva, M. Ritschel, D. Elefant, K. Biedermann, B. Buechner, Synthesis, properties and applications of ferromagneticfilled carbon nanotubes, Chemical Vapor Deposition 12, (2006) 380, [8] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, L.

Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A 69, (1999) 255, [9] S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, A simple chemical method of opening and filling carbon nanotubes, Nature 372, (1994) 159, [10] F. Qiang, G. Weinberg, S. Dang-sheng, Selective filling of carbon nanotubes with metals by selective washing, New Carbon Materials 23, (2008) 17, [11] K. Schulte1, C. Yan, M. Ahola-Tuomi, A. Strozecka, P. J. Moriarty, A. N.

Khlobystov, Journal of Physics: Conference Series 100, (2008) 012017, [12] M. Monthioux, Filling single-wall carbon nanotubes. Carbon 40, (2002) 1809, [13] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes, Chem. Rev. 106, (2006) 1105, [14] K. Balasubramanian, M. Burghard, Chemically Functionalized Carbon Nanotubes, Small 1, (2005)180, [15] C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics, Biochim. Biophys. Acta, 1758 (2006) 404, [16] I. Moench, A. Meye, A. Leonhardt, K. Kraemer, R. Kozhuharova, T. Gemming, M.P. Wirth, B. Buechner, Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells, J. Magn. Magn. Mater.

290-291 (2005) 276, [17] H. Jin, D. A. Heller, M. S. Strano, Single-Particle Tracking of Endocytosis and Exocytosis of Single-Walled Carbon Nanotubes in NIH-3T3 Cells, Nano Lett. 8, (2008) 1577, [18] A. Taylor, Y. Krupskaya, K. Krämer, S. Füssel, R. Klingeler, B. Büchner, M. P.

Wirth, Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia, Carbon 48, (2010) 2327, [19] L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology, J. Contr. Rel. 58, (1460) 2006, [20] Y. Krupskaya, C. Mahn, A. Parameswaran, A. Taylor, K. Krämer, S.Hampel, A.

Leonhardt, M. Ritschel, B. BÄuchner, R. Klingeler, Magnetic study of iron-containing carbon nanotubes: feasibility for magnetic hyperthermia, J. Magn. Magn. Mater. 321, (2009) 4067, [21] A. P. Shpak, S.P. Kolesnik, G. S. Mogilny, Y. N. Petrov, V. P. Sokhatsky, L.N.

Trophimova, B. D. Shanina, V. G. Gavriljuk, Structure and magnetic properties of iron nanowires encased in multiwalled carbon nanotubes, Acta Materialia 55, 1769 (2007), [22] F. Geng, H. Cong, Fe-filled carbon nanotube array with high coercivity, Physica B 382, 300 (2006), [26] W. Heisenberg, Many-Body Problem and Resonance in Quantum Mechanics, Z.

29 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Other literature type . Doctoral thesis . 2011

Development of a micro-Hall magnetometer and studies of individual Fe-filled carbon nanotubes

Lipert, Kamil;