publication . Doctoral thesis . 2010

The selenoproteome of the malarial parasite Plasmodium falciparum

Röseler, Anne;
Open Access German
  • Published: 01 Jan 2010
  • Publisher: Justus-Liebig-Universität Gießen
  • Country: Germany
Abstract
Die Protozoen des Genus Plasmodium verursachen weltweit rund 247 Millionen Malariafälle jedes Jahr. Da der Malariaparasit schnell und effektiv Resistenzen gegen neue Antimalaria-Medikamente entwickelt, ist es notwendig, stets innovative Wirkstoffe zu finden. Dabei spielen das Verständnis der grundlegenden Stoffwechselfunktionen und die Entdeckung neuer potenzieller drug targets wichtige Rollen in der präklinischen Forschung. Während ihrer Lebensphasen in menschlichen Erythrozyten und dem Mückenvektor sind die Malariaparasiten verschiedenen pro-oxidativen Umgebungen ausgesetzt. Daher haben die Parasiten ein komplexes Netzwerk aus antioxidativen schützenden Mechan...
Subjects
free text keywords: Selenoprotein, Plasmodium, SelK, SelT, SelS, nucleus, endoplasmic, calcium, redox, CxxU, Life sciences, ddc:570
Related Organizations
85 references, page 1 of 6

Malaria ..............................................................................................................................1 Verbreitung und Bedeutung der Malaria .....................................................................1 Erreger, Krankheitsbild und Vektor.............................................................................3 Lebenszyklus von Plasmodium ..................................................................................6 Medikamente, Resistenzen und Vakzine....................................................................8 Diskussion..............................................................................................................................95 4.1 PfSel1 als ein SelK-Homologon ......................................................................................95 4.2 PfSel2 als ein SelT-Homologon.......................................................................................98 4.3 PfSel3: duale Funktion? ................................................................................................104 4.4 PfSel4 als ein SelS-Homologon ....................................................................................106 4.5 Biosynthesemaschinerie von Selenoproteinen ..............................................................109 4.6 Regulation redoxaktiver Proteine im Vergleich der Selenoproteine ...............................110 5

88. Howard MT, Aggarwal G, Anderson CB, Khatri S, Flanigan KM, Atkins JF: Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons. Embo J 2005, 24(8):1596-1607.

89. Howard MT, Moyle MW, Aggarwal G, Carlson BA, Anderson CB: A recoding element that stimulates decoding of UGA codons by Sec tRNA[Ser]Sec. Rna 2007, 13(6):912-920.

90. Tamura T, Yamamoto S, Takahata M, Sakaguchi H, Tanaka H, Stadtman TC, Inagaki K: Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation. Proc Natl Acad Sci U S A 2004, 101(46):16162-16167.

91. Chavatte L, Brown BA, Driscoll DM: Ribosomal protein L30 is a component of the UGAselenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 2005, 12(5):408- 416.

92. Papp LV, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna KK: The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol Cell Biol 2006, 26(13):4895-4910.

93. Lobanov AV, Delgado C, Rahlfs S, Novoselov SV, Kryukov GV, Gromer S, Hatfield DL, Becker K, Gladyshev VN: The Plasmodium selenoproteome. Nucleic Acids Res 2006, 34(2):496-505. [OpenAIRE]

94. Zhong L, Arner ES, Holmgren A: Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci U S A 2000, 97(11):5854-5859. [OpenAIRE]

95. Waller RF, Reed MB, Cowman AF, McFadden GI: Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. Embo J 2000, 19(8):1794-1802. [OpenAIRE]

96. Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI: Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 1998, 95(21):12352-12357. [OpenAIRE]

97. Kalendar R, Lee D, Schulman AH: FastPCR Software for PCR Primer and Probe Design and Repeat Search. In: Genes, Genomes and Genomics. vol. 3; 2009. [OpenAIRE]

98. Kibbe WA: OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 2007, 35(Web Server issue):W43-46. [OpenAIRE]

99. Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33(2):511-518. [OpenAIRE]

100. Su XZ, Wu Y, Sifri CD, Wellems TE: Reduced extension temperatures required for PCR amplification of extremely A+T-rich DNA. Nucleic Acids Res 1996, 24(8):1574-1575. [OpenAIRE]

101. Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.

85 references, page 1 of 6
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue