publication . Conference object . 2017

Conceptualizing reasoning-and-proving opportunities in textbook expositions : Cases from secondary calculus

Bergwall, Andreas;
Open Access English
  • Published: 01 Feb 2017 Journal: Publikationer från Örebro universitet (issn: _____384, Copyright policy)
  • Publisher: Örebro universitet, Institutionen för naturvetenskap och teknik
  • Country: Sweden
Abstract
International audience; ; andreas.bergwall@oru.se Several recent textbook studies focus on opportunities to learn reasoning-and-proving. They typically investigate the extent to which justifications are general proofs and what opportunities exist for learning important elements of mathematical reasoning. In this paper, I discuss how a particular analytical framework for this might be refined. Based on an in-depth analysis of certain textbook passages in upper secondary calculus textbooks, I make an account for analytical issues encountered during this process and identify aspects of reasoning-and-proving in textbooks that might be missed unless the framework is ...
Subjects
free text keywords: Reasoning-and-proving, mathematics textbook, upper secondary calculus, Other Mathematics, Annan matematik, Educational Sciences, Utbildningsvetenskap, [ MATH ] Mathematics [math], [ SHS ] Humanities and Social Sciences, [MATH]Mathematics [math], [SHS]Humanities and Social Sciences
Related Organizations
17 references, page 1 of 2

Alfredsson, L., Bråting, K., Erixon, P., & Heikne, H. (2012). Matematik 5000 : Kurs 3c, blå Lärobok. Stockholm: Natur & Kultur.

Bergwall, A. (2015). On a generality framework for proving tasks. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Conference of the European Society for Research in Mathematics Education (CERME9, 4-8 February 2015) (pp. 86−92). Prague, Czech Republic: Charles University in Prague, Faculty of Education and ERME. [OpenAIRE]

Bergwall, A., & Hemmi, K. (2017). The state of proof in Finnish and Swedish mathematics textbooks-capturing differences in approaches to upper secondary integral calculus. Mathematical Thinking and Learning, 19(1), 1−18.

Davis, J. D., Smith, D. O., Roy, A. R., & Bilgic, Y. K. (2014). Reasoning-and-proving in algebra: The case of two reform-oriented US textbooks. International Journal of Educational Research, 64, 92−106.

Hanna, G., & de Bruyn, Y. (1999). Opportunity to learn proof in Ontario grade twelve mathematics texts. Ontario Mathematics Gazette, 37(4), 23−29.

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805−842). Charlotte, NC: Information Age Publishing.

Kontkanen, P., Lehtonen, J., Luosto, K., Savolainen, S., & Lillhonga, T. (2008). Ellips : Integralkalkyl. Helsingfors: Schildts Förlags Ab.

Lesh, R., & Sriraman, B. (2010). Re-conceptualizing mathematics education as a design science. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 123−146). Berlin Heidelberg: Springer-Verlag.

Nordström, K., & Löfwall, C. (2006). Proof in Swedish upper secondary school mathematics textbooks-the issue of transparency. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (CERME4, 17-21 February 2005) (pp. 448−457). Barcelona, Spain: Universitat Ramon Llull.

Otten, S., Gilbertson, N. J., Males, L. M., & Clark, D. L. (2014). The mathematical nature of reasoning-and-proving opportunities in geometry textbooks. Mathematical Thinking and Learning, 16(1), 51−79.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1−36. [OpenAIRE]

Stacey, K., & Vincent, J. (2009). Modes of reasoning in explanations in Australian eighth-grade mathematics textbooks. Educational Studies in Mathematics, 72(3), 271−288.

Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 319−369). Charlotte, NC: Information Age Publishing.

Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical Thinking and Learning, 11(4), 258−288. [OpenAIRE]

Stylianides, G. J. (2014). Textbook analyses on reasoning-and-proving: Significance and methodological challenges. International Journal of Educational Research, 64, 63−70. [OpenAIRE]

17 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Conference object . 2017

Conceptualizing reasoning-and-proving opportunities in textbook expositions : Cases from secondary calculus

Bergwall, Andreas;