publication . Bachelor thesis . 2012

Social Network Analysis Utilizing Big Data Technology

Magnusson, Jonathan;
Open Access English
  • Published: 01 Jan 2012
  • Publisher: Uppsala universitet, Avdelningen för datalogi
  • Country: Sweden
Abstract
As of late there has been an immense increase of data within modern society. This is evident within the field of telecommunications. The amount of mobile data is growing fast. For a telecommunication operator, this provides means of getting more information of specific subscribers. The applications of this are many, such as segmentation for marketing purposes or detection of churners, people about to switching operator. Thus the analysis and information extraction is of great value. An approach of this analysis is that of social network analysis. Utilizing such methods yields ways of finding the importance of each individual subscriber in the network. This thesi...
Subjects
free text keywords: Social Network Analysis, Telecommunication Networks, Hadoop, Machine Learning, Computer Sciences, Datavetenskap (datalogi)
Related Organizations
17 references, page 1 of 2

56 A Parallelization of Social Network Algorithms 60 A.1 Degree Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A.2 Eigenvector Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A.3 Ego Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A.4 Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 B Technical Speci cations 67 B.1 Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 B.1.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 B.1.2 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 B.1.3 Hard Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 B.2 Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 B.2.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 B.2.2 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 B.2.3 Hard Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

[15] A. A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty, K. Dasgupta, S. Mukherjea and A. Joshi, On the Structural Properties of Massive Telecom Call Graphs: Findings and Implications. Proceedings of the 15th ACM international conference on Information and knowledge management, 435-444, 2006. [OpenAIRE]

[16] M. E. J. Newman and Juyong Park, Why social networks are di erent from other types of networks. Physical Review E, 68:036122, 2003. [OpenAIRE]

[17] Fredrik Hildorsson, Scalable Solutions for Social Network Analysis. Diva portal, 2009. [OpenAIRE]

[18] Albert-Laszlo Barabasi and Reka Albert, Emergence of Scaling in Random Networks. Science, 286:509-512, 1999.

[19] Jurij Leskovec , Deepayan Chakrabarti , Jon Kleinberg , Christos Faloutsos, Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. in PKDD, 133-145, 2005. [OpenAIRE]

[20] Duncan J. Watts, Steven H. Strogatz, Collective dynamics of `small-world' networks. Nature, 393:440-442, 1998.

[23] M. E. J. Newman, Analysis of Weighted Networks. Physical Review, 70, 056131, 2005.

[31] Course page by Jimmy Lin, Data-Intensive Information Processing Applications. retrieved 7 November 2011, http://www.umiacs.umd.edu/~jimmylin/cloud-2010- Spring/syllabus.html.

[32] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica, Spark: Cluster Computing with Working Sets. HotCloud'10 Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, 2010.

[33] Sangwon Seo, Edward J. Yoon, HAMA: An E cient Matrix Computation with the MapReduce Framework. 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), 2010. [OpenAIRE]

[37] J. R. Quinlan, Induction of Decision Trees. Machine Learning, 81-106, 1986.

[39] Tom M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[40] Wikipidia article, Sigmoid Function. retrieved 3 October 2011, http://en. wikipedia.org/wiki/Sigmoid_function.

[41] David W. Hosmer, Stanley Lemeshow, Applied logistic regression. John Wiley & Sons, 2000.

17 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue