publication . Preprint . Article . 2019

Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector

Ballett, Peter; Boschi, Tommaso; Pascoli, Silvia;
Open Access English
  • Published: 01 May 2019
  • Country: United Kingdom
Heavy nearly-sterile neutrinos are a common ingredient in extensions of the Standard Model which aim to explain neutrino masses, like for instance in Type I seesaw models, or one of its variants. If the scale of the new Heavy Neutral Leptons (HNLs) is sufficiently low, observable signatures can arise in a range of current and upcoming experiments, from the LHC to neutrino experiments. In this article, we discuss the phenomenology of sterile neutrinos in the MeV to GeV mass range, focusing on their decays. We embed our discussion in a realistic mass model and consider the resulting implications. We focus in particular on the impact on the signal of the strong pol...
arXiv: High Energy Physics::ExperimentHigh Energy Physics::PhenomenologyPhysics::Instrumentation and Detectors
free text keywords: High Energy Physics - Phenomenology, Beyond Standard Model, Neutrino Detectors and Telescopes (experiments), Rare decay, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Nuclear and High Energy Physics
Funded by
Neutrinos: a different portal to new physics Beyond the Standard Model
  • Funder: European Commission (EC)
  • Project Code: 617143
  • Funding stream: FP7 | SP2 | ERC
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
114 references, page 1 of 8

[1] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81 (1998) 1562, hep-ex/9807003.

[2] B. Aharmim et al. [SNO Collaboration], Phys. Rev. C 72 (2005) 055502, nucl-ex/0502021.

[3] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, JHEP 1901 (2019) 106, arXiv:1811.05487 [hep-ph].

[4] K. N. Abazajian et al., arXiv:1204.5379 [hep-ph].

[5] T. Asaka, S. Blanchet and M. Shaposhnikov, Phys. Lett. B 631 (2005) 151, hep-ph/0503065.

[6] M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986) 45.

[7] L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384 (1996) 169, hep-ph/9605319.

[8] A. Pilaftsis, Phys. Rev. D 56 (1997) 5431, hep-ph/9707235.

[9] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B 692 (2004) 303, hep-ph/0309342.

[10] W. Buchmuller and M. Plumacher, Phys. Lett. B 431 (1998) 354, hep-ph/9710460.

[11] S. Davidson, E. Nardi and Y. Nir, Phys. Rept. 466 (2008) 105, arXiv:0802.2962 [hep-ph].

[12] E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, Phys. Rev. Lett. 81 (1998) 1359, hep-ph/9803255.

[13] T. Asaka and M. Shaposhnikov, Phys. Lett. B 620 (2005) 17, hep-ph/0505013.

[14] P. Hernández, M. Kekic, J. López-Pavón, J. Racker and N. Rius, JHEP 1510 (2015) 067, arXiv:1508.03676 [hep-ph].

[15] P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, JHEP 1608 (2016) 157, arXiv:1606.06719 [hep-ph].

114 references, page 1 of 8
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue