Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study

Article English OPEN
Adepeju, M; Rosser, G; Cheng, T;
(2016)
  • Publisher: Taylor & Francis
  • Subject: Point process, hotspot, prediction, space-time, crime

Many physical and sociological processes are represented as discrete events in time and space. These spatio-temporal point processes are often sparse, meaning that they cannot be aggregated and treated with conventional regression models. Models based on the point proce... View more
  • References (39)
    39 references, page 1 of 4

    Brimicombe, A., 2012. Did GIS start a crime wave? SatNav theft and its implications for geoinformation engineering. The Professional Geographer, 64, 3. 430-445. 10.1080/ 00330124.2011.609778

    Brimicombe, A.J., Brimicombe, L.C., and Li, Y., 2007. Improving geocoding rates in preparation for crime data analysis. International Journal of Police Science & Management, 9 (1), 80-92. doi:10.1350/ijps.2007.9.1.80

    Brown, C.D. and Davis, H.T., 2006. Receiver operating characteristics curves and related decision measures: A tutorial. Chemometrics and Intelligent Laboratory Systems, 80 (1), 24-38. doi:10.1016/ j.chemolab.2005.05.004

    Chainey, S., Tompson, L., and Uhlig, S., 2008. The utility of hotspot mapping for predicting spatial patterns of crime. Security Journal, 21 (1-2), 4-28. doi:10.1057/palgrave.sj.8350066

    Cheng, T. and Adepeju, M., 2014. Modifiable temporal unit problem (MTUP) and its effect on space-time cluster detection. Plos One, 9 (6), e100465. doi:10.1371/journal.pone.0100465

    Cheng, T., et al., 2014. A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling. Geographical Analysis, 46 (1), 75-97. doi:10.1111/gean.12026

    Daley, D.J. and Vere-Jones, D., 2006. An introduction to the theory of point processes: Volume I: Elementary theory and methods, Springer Science & Business Media. Available from: https:// books.google.com/books?id=6Sv4BwAAQBAJ&pgis=1 [Accessed 3 August 2015].

    Diebold, F.X. and Mariano, R.S., 1995. Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253-265.

    Diggle, P.J., 1986. Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial point pattern. Journal of Neuroscience Methods, 18 (1-2), 115-125. doi:10.1016/0165-0270(86) 90115-9

    Duong, T. and Hazelton, M.L., 2005. Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinavian Journal of Statistics, 32 (1), 485-506. doi:10.1111/j.1467- 9469.2005.00445.x

  • Related Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark