Optimizing Hybrid Spreading in Metapopulations

Article, Preprint English OPEN
Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.;
  • Publisher: Nature Publishing Group
  • Journal: Scientific Reports,volume 5 (eissn: 2045-2322)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1038/srep09924, pmc: PMC4413882
  • Subject: Computer Science - Social and Information Networks | Quantitative Biology - Populations and Evolution | Physics - Physics and Society | Phase transitions and critical phenomena, Statistical physics, thermodynamics and nonlinear dynamics | Article

Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and globa... View more
  • References (40)
    40 references, page 1 of 4

    1. Newman, M. Networks: An Introduction (Oxford University Press, 2010).

    2. Keeling, M. & Eames, K. Networks and epidemic models. J. R. Soc. Interface 2, 295-307 (2005).

    3. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001).

    4. Anderson, R. M. Discussion: The Kermack-McKendrick epidemic threshold theorem. Bull. Math. Biol. 53, 1-32 (1991).

    5. Shin, S., Gu, G., Reddy, N. & Lee, C. A large-scale empirical study of Conficker. IEEE. Trans. Inf. Forensics Security 7, 676-690 (2012).

    6. Moore, D., Shannon, C. & Claffy, K. Code-red: a case study on the spread and victims of an internet worm. Paper presented at IMW '02: the 2nd ACM SIGCOMM Workshop on Internet measurment, Marseille, France. New York, USA: Association for Computing Machinery. (2002).

    7. Ball, F., Mollison, D. & Scalia-Tomba, G. Epidemics with two levels of mixing. Ann. Appl. Probab. 7, 46-89 (1997).

    8. Vazquez, A. Epidemic outbreaks on structured populations. J. Theor. Biol. 245, 125-129 (2007).

    9. Ball, F. An SIR epidemic model on a population with random network and household structure, and several types of individuals. Adv. Appl. Probab. 44, 63-86 (2012).

    10. House, T. & Keeling, M. J. Deterministic epidemic models with explicit household structure. Math. Biosci. 213, 29-39 (2008).

  • Related Research Results (1)
  • Metrics
Share - Bookmark