Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions

Article English OPEN
Cunha, Joana T.; Romaní, Aloia; Costa, Carlos E.; Sá-Correia, Isabel; Domingues, Lucília;
(2019)
  • Publisher: Springer Nature
  • Related identifiers: doi: 10.1007/s00253-018-9478-3
  • Subject: S | Science & Technology | Inhibitory compounds | Lignocellulosic biomass | cerevisiae | Stress response mechanisms | Metabolic engineering | S. cerevisiae

Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad r... View more
  • References (133)
    133 references, page 1 of 14

    Abbott DA, Knijnenburg TA, de Poorter LMI, Reinders MJT, Pronk JT, van Maris AJA (2007) Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 7(6):819-833. https://doi.org/10.1111/j.1567-1364.2007.00242.x

    Adeboye PT, Bettiga M, Olsson L (2014) The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express 4:46-46. https://doi.org/10.1186/ s13568-014-0046-7

    Adeboye PT, Bettiga M, Aldaeus F, Larsson PT, Olsson L (2015) Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microb Cell Factories 14:149. https://doi.org/10.1186/s12934-015-0338-x

    Adeboye PT, Bettiga M, Olsson L (2017) ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and pcoumaric acid in Saccharomyces cerevisiae. Sci Rep 7:42635. https://doi.org/10.1038/srep42635

    Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2. https://doi.org/10.1186/1754-6834-3-2

    Alriksson B, Horváth IS, Jönsson L (2010) Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem 45(2):264-271. https:// doi.org/10.1016/j.procbio.2009.09.016

    Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles J-C (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiol 148(8):2599-2606. https://doi.org/ 10.1099/00221287-148-8-2599

    Alvira P, Negro MJ, Ballesteros M (2011) Effect of endoxylanase and α- L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102(6):4552- 4558. https://doi.org/10.1016/j.biortech.2010.12.112

    Ask M, Bettiga M, Mapelli V, Olsson L (2013) The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):22. https://doi. org/10.1186/1754-6834-6-22

    Bellissimi E, van Dijken JP, Pronk JT, van Maris AJ (2009) Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 9(3):358-364. https://doi.org/10.1111/j.1567-1364.2009. 00487.x

  • Related Research Results (2)
  • Similar Research Results (1)
  • Related Organizations (1)
  • Metrics
Share - Bookmark