Simultaneous saccharification and fermentation of hydrothermal pretreated lignocellulosic biomass: evaluation of process performance under multiple stress conditions

Article English OPEN
Kelbert, M.; Romaní, Aloia; Coelho, Eduardo; Pereira, L.; Teixeira, J. A.; Domingues, Lucília;
(2016)
  • Publisher: Springer
  • Related identifiers: doi: 10.1007/s12155-016-9722-6
  • Subject: Fermentation lignocellulosic biomass | High solid loading | Science & Technology | Inhibitor compounds | Industrial strain | Hydrothermal treatment | High temperature

Industrial lignocellulosic bioethanol processes are exposed to different environmental stresses (such as inhibitor compounds, high temperature, and high solid loadings). In this study, a systematic approach was followed where the liquid and solid fractions were mixed to... View more
  • References (31)
    31 references, page 1 of 4

    1. Sanna A (2014) Advanced biofuels from thermochemical processing of sustainable biomass in Europe. Bioenergy Res 7(1):36-47. doi:10.1007/s12155-013-9378-4

    2. Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié- M o r e n o M R , T h e v e l e i n J M ( 2 0 1 5 ) L o o k i n g b e y o n d Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15(6):1-13. doi:10.1093/femsyr/fov053

    3. Weil J, Westgate P, Kohlmann K, Ladisch MR (1994) Cellulose pretreatments of lignocellulosic substrates. Enzym Microb Technol 16:1002-1004

    4. Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101(22):8706-8712. doi:10.1016/j. biortech.2010.06.093

    5. Chandel AK, da Silva SS, Singh OV. Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenerg Res 6(1):388-401. doi: 10.1007/ s12155-012-9241-z

    6. Almeida JRM, Bertillsson M, Gorwa-Grauslund MF, Gorsich S, Lindén G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82(4): 625-638. doi:10.1007/s00253-009-1875-1

    7. Mesa L, González E, Romero I, Ruiz E, Cara C, Castro C (2011) Comparison of process configurations for ethanol production from two-step pretreated sugarcane bagasse. Chem Eng J 175:185-191. doi:10.1016/j.cej.2011.09.092

    8. Steensels J, Verstrepen KJ (2014) Taming wild yeast: potential of conventional and nonconventional yeast in industrial fermentations. Annu Rev Microbiol 68:61-80. doi:10.1146/annurev-micro091213-113025

    9. Anderson PJ, McNeil K, Watson K (1986) High-efficiency carbohydrate fermentation to ethanol at temperatures above 40 °C by Kluyveromyces marxianus var. marxianus isolated from sugars mills. Appl Environ Micobiol 51(6):1314-1320. doi: 0099-2240/ 86/061314-07$02.00/0

    10. Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK (2013) Cooling system economy in ethanol production using thermotolerant yeast Kluyveromyces sp. IIPE453. Am J Micobiol Res 1(3):39-44. doi:10.12691/ajmr-1-3-1

  • Related Organizations (3)
  • Metrics
Share - Bookmark