Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium

Article English OPEN
Rodrigues, Ana Cristina; Fontão, A.; Leal, Marta; Soares da Silva, F. A. G.; Coelho, Aires; Wan, Yizao; Dourado, Fernando; Gama, F. M.;
(2019)
  • Publisher: Elsevier
  • Related identifiers: doi: 10.1016/j.nbt.2018.12.002
  • Subject: Surface area | Low-cost substrates | Science & Technology | BNC production optimization | Culture medium depth | Response surface methodology-central composite design

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.nbt.2018.12.002. This work aimed at the optimization of bacterial nanocellulose (BNC) production by static culture, using Komagataeibacter xylinus BPR... View more
  • References (55)
    55 references, page 1 of 6

    [1] Cleenwerck I, De Wachter M, Gonzalez A, De Vuyst L, De Vos P. Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. Int J Syst Evol Microbiol 2009;59(7):1771-86. https://doi.org/10.1099/ijs.0. 005157-0.

    [2] Kersters K, Lisdiyanti P, Komagata K, Swings J. The family acetobacteraceae: the genera acetobacter, acidomonas, asaia, gluconacetobacter, gluconobacter, and kozakia. 3 ed.Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. Prokaryotes, 5. New York: Springer; 2006. p. 163-200.

    [3] Matsushita K, Inque T, Theeragool G, Trcek J, Toyama H, Adachi O. Acetic acid production in acetic acid bacteria leading to their "death" and survival. In: Yamada M, editor. Survival and death in bacteria. Kerala/India: Research Signpost; 2005. p. 169-18.

    [4] Sievers M, Family II Swings J, et al. Acetobacteraceae. 2nd ed.Staley JT, editor. Bergey's manual® of systematic bacteriology, 2C. New York: Springer-Verlag New York LLC; 2005. p. 41-94.

    [5] Yamada Y, Hoshino K-I, Ishikawa T. Taxonomic studies of acetic acid Bacteria and allied organisms. Part XI. The phylogeny of acetic acid Bacteria Based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 1997;61(8):1244-51. https://doi. org/10.1271/bbb.61.1244.

    [6] Yamada Y, Hosono R, Lisdyanti P, Widyastuti Y, Saono S, et al. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J Gen Appl Microbiol 1999;45(1):23-8. https://doi. org/10.2323/jgam.45.23.

    [7] Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M. Bacterial cellulose/ silica nanocomposites: preparation and characterization. Carbohydr Polym 2012;90(1):413-8. https://doi.org/10.1016/j.carbpol.2012.05.060.

    [8] Saibuatong OA, Phisalaphong M. Novo aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydr Polym 2010;79(2):455-60. https://doi.org/10.1016/ j.carbpol.2009.08.039.

    [9] Andrade FK, Pertile RAN, Dourado F, Gama FM. Bacterial cellulose: properties, production and applications. In: Lejeune A, Deprez T, editors. Cellulose: structure and properties, derivatives and industrial uses. New York: Nova Science Publishers Inc; 2010. p. 427-58.

    [10] Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 2011;50:5438-66. https://doi.org/10.1002/anie.201001273.

  • Similar Research Results (2)
  • Related Organizations (1)
  • Metrics
Share - Bookmark