publication . Article . Other literature type . 2017

Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes

Liu, Jiancong; Wang, Ning; Yu, Yue; Yan, Yan; Zhang, Hongyue; Li, Jiyang; Yu, Jihong;
Open Access
  • Published: 01 May 2017 Journal: Science Advances, volume 3, page e1603171 (eissn: 2375-2548, Copyright policy)
  • Publisher: American Association for the Advancement of Science (AAAS)
Abstract
Thermally activated delayed fluorescence (TADF) materials are inspiring intensive research in optoelectronic applications. To date, most of the TADF materials are limited to metal-organic complexes and organic molecules with lifetimes of several microseconds/milliseconds that are sensitive to oxygen. We report a facial and general “dots-in-zeolites” strategy to in situ confine carbon dots (CDs) in zeolitic matrices during hydrothermal/solvothermal crystallization to generate high-efficient TADF materials with ultralong lifetimes. The resultant CDs@zeolite composites exhibit high quantum yields up to 52.14% and ultralong lifetimes up to 350 ms at ambient temperat...
Subjects
free text keywords: Quenching, Fluorescence, Nanotechnology, Air atmosphere, Zeolite, Biology, Intersystem crossing, Carbon, chemistry.chemical_element, chemistry, Crystallization, law.invention, law, Microsecond, Research Article, Research Articles, SciAdv r-articles, Materials Science, carbon dots, Thermally activated delayed fluorescence, composite materials, security protection, hydrothermal synthesis
Related Organizations
49 references, page 1 of 4

1 An Z., Zheng C., Tao Y., Chen R., Shi H., Chen T., Wang Z., Li H., Deng R., Liu X., Huang W., Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater.14, 685–690 (2015).25849370 [PubMed]

2 Gómez-Bombarelli R., Aguilera-Iparraguirre J., Hirzel T. D., Duvenaud D., Maclaurin D., Blood-Forsythe M. A., Chae H. S., Einzinger M., Ha D.-G., Wu T., Markopoulos G., Jeon S., Kang H., Miyazaki H., Numata M., Kim S., Huang W., Hong S. I., Baldo M., Adams R. P., Aspuru-Guzik A., Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater.15, 1120–1127 (2016).27500805 [PubMed]

3 Zhao W., He Z., Lam J. W. Y., Peng Q., Ma H., Shuai Z., Bai G., Hao J., Tang B. Z., Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 1, 592–602 (2016).

4 Xu S., Chen R., Zheng C., Huang W., Excited state modulation for organic afterglow: Materials and applications. Adv. Mater.28, 9920–9940 (2016).27634285 [PubMed]

5 Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).23235877 [PubMed]

6 Hirata S., Sakai Y., Masui K., Tanaka H., Lee S. Y., Nomura H., Nakamura N., Yasumatsu M., Nakanotani H., Zhang Q., Shizu K., Miyazaki H., Adachi C., Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater.14, 330–336 (2015).25485987 [PubMed]

7 Bergmann L., Hedley G. J., Baumann T., Bräse S., Samuel I. D. W., Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Sci. Adv.2, e1500889 (2016).26767194 [OpenAIRE] [PubMed]

8 Nakanotani H., Furukawa T., Morimoto K., Adachi C., Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers. Sci. Adv.2, e1501470 (2016).26933691 [OpenAIRE] [PubMed]

9 Tao Y., Yuan K., Chen T., Xu P., Li H., Chen R., Zheng C., Zhang L., Huang W., Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater.26, 7931–7958 (2014).25230116 [PubMed]

10 Augusto V., Baleizao C., Berberan-Santos M. N., Farinha J. P. S., Oxygen-proof fluorescence temperature sensing with pristine C 70 encapsulated in polymer nanoparticles. J. Mater. Chem.20, 1192–1197 (2010).

11 Zhang Q., Li B., Huang S., Nomura H., Tanaka H., Adachi C., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014).

12 Cuttell D. G., Kuang S.-M., Fanwick P. E., McMillin D. R., Walton R. A., Simple Cu(I) complexes with unprecedented excited-state lifetimes. J. Am. Chem. Soc.124, 6–7 (2002).11772046 [OpenAIRE] [PubMed]

13 Lee S. Y., Yasuda T., Yang Y. S., Zhang Q., Adachi C., Luminous butterflies: Efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs. Angew. Chem. Int. Ed.53, 6402–6406 (2014).

14 Zhang Q., Li J., Shizu K., Huang S., Hirata S., Miyazaki H., Adachi C., Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc.134, 14706–14709 (2012).22931361 [OpenAIRE] [PubMed]

15 Berberan-Santos M. N., Garcia J. M. M., Unusually strong delayed fluorescence of C 70. J. Am. Chem. Soc.118, 9391–9394 (1996).

49 references, page 1 of 4
Abstract
Thermally activated delayed fluorescence (TADF) materials are inspiring intensive research in optoelectronic applications. To date, most of the TADF materials are limited to metal-organic complexes and organic molecules with lifetimes of several microseconds/milliseconds that are sensitive to oxygen. We report a facial and general “dots-in-zeolites” strategy to in situ confine carbon dots (CDs) in zeolitic matrices during hydrothermal/solvothermal crystallization to generate high-efficient TADF materials with ultralong lifetimes. The resultant CDs@zeolite composites exhibit high quantum yields up to 52.14% and ultralong lifetimes up to 350 ms at ambient temperat...
Subjects
free text keywords: Quenching, Fluorescence, Nanotechnology, Air atmosphere, Zeolite, Biology, Intersystem crossing, Carbon, chemistry.chemical_element, chemistry, Crystallization, law.invention, law, Microsecond, Research Article, Research Articles, SciAdv r-articles, Materials Science, carbon dots, Thermally activated delayed fluorescence, composite materials, security protection, hydrothermal synthesis
Related Organizations
49 references, page 1 of 4

1 An Z., Zheng C., Tao Y., Chen R., Shi H., Chen T., Wang Z., Li H., Deng R., Liu X., Huang W., Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater.14, 685–690 (2015).25849370 [PubMed]

2 Gómez-Bombarelli R., Aguilera-Iparraguirre J., Hirzel T. D., Duvenaud D., Maclaurin D., Blood-Forsythe M. A., Chae H. S., Einzinger M., Ha D.-G., Wu T., Markopoulos G., Jeon S., Kang H., Miyazaki H., Numata M., Kim S., Huang W., Hong S. I., Baldo M., Adams R. P., Aspuru-Guzik A., Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater.15, 1120–1127 (2016).27500805 [PubMed]

3 Zhao W., He Z., Lam J. W. Y., Peng Q., Ma H., Shuai Z., Bai G., Hao J., Tang B. Z., Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 1, 592–602 (2016).

4 Xu S., Chen R., Zheng C., Huang W., Excited state modulation for organic afterglow: Materials and applications. Adv. Mater.28, 9920–9940 (2016).27634285 [PubMed]

5 Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).23235877 [PubMed]

6 Hirata S., Sakai Y., Masui K., Tanaka H., Lee S. Y., Nomura H., Nakamura N., Yasumatsu M., Nakanotani H., Zhang Q., Shizu K., Miyazaki H., Adachi C., Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater.14, 330–336 (2015).25485987 [PubMed]

7 Bergmann L., Hedley G. J., Baumann T., Bräse S., Samuel I. D. W., Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Sci. Adv.2, e1500889 (2016).26767194 [OpenAIRE] [PubMed]

8 Nakanotani H., Furukawa T., Morimoto K., Adachi C., Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers. Sci. Adv.2, e1501470 (2016).26933691 [OpenAIRE] [PubMed]

9 Tao Y., Yuan K., Chen T., Xu P., Li H., Chen R., Zheng C., Zhang L., Huang W., Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater.26, 7931–7958 (2014).25230116 [PubMed]

10 Augusto V., Baleizao C., Berberan-Santos M. N., Farinha J. P. S., Oxygen-proof fluorescence temperature sensing with pristine C 70 encapsulated in polymer nanoparticles. J. Mater. Chem.20, 1192–1197 (2010).

11 Zhang Q., Li B., Huang S., Nomura H., Tanaka H., Adachi C., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014).

12 Cuttell D. G., Kuang S.-M., Fanwick P. E., McMillin D. R., Walton R. A., Simple Cu(I) complexes with unprecedented excited-state lifetimes. J. Am. Chem. Soc.124, 6–7 (2002).11772046 [OpenAIRE] [PubMed]

13 Lee S. Y., Yasuda T., Yang Y. S., Zhang Q., Adachi C., Luminous butterflies: Efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs. Angew. Chem. Int. Ed.53, 6402–6406 (2014).

14 Zhang Q., Li J., Shizu K., Huang S., Hirata S., Miyazaki H., Adachi C., Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc.134, 14706–14709 (2012).22931361 [OpenAIRE] [PubMed]

15 Berberan-Santos M. N., Garcia J. M. M., Unusually strong delayed fluorescence of C 70. J. Am. Chem. Soc.118, 9391–9394 (1996).

49 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2017

Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes

Liu, Jiancong; Wang, Ning; Yu, Yue; Yan, Yan; Zhang, Hongyue; Li, Jiyang; Yu, Jihong;