publication . Article . 2019

Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly

Guo, Mengfan; Jiang, Jianyong; Qian, Jianfeng; Liu, Chen; Ma, Jing; Nan, Ce‐Wen; Shen, Yang;
Open Access English
  • Published: 01 Jan 2019 Journal: Advanced Science, volume 6, issue 6 (eissn: 2198-3844, Copyright policy)
  • Publisher: John Wiley and Sons Inc.
Abstract
Abstract Ferroelectric memories are endowed with high data storage density by nanostructure designing, while the robustness is also impaired. For organic ferroelectrics favored by flexible memories, low Curie transition temperature limits their thermal stability. Herein, a ferroelectric random access memory (FeRAM) is demonstrated based on an array of P(VDF‐TrFE) lamellae by self‐assembly. Written data shows enhanced thermal endurance up to 90 °C and undergoes 12 thermal cycles between 30 and 80 °C with little volatilization. The promoted thermal stability is attributed to pinning effect at interfaces between grain boundaries and lamellae, where charged domain w...
Subjects
free text keywords: Communication, Communications, ferroelectric random access memories (FeRAMs), grain boundaries, P(VDF‐TrFE), self‐assembly, thermal stability
49 references, page 1 of 4

1 a) J. F.Scott, C. A. P.Dearaujo, Science 1989, 246, 1400;17755995 [PubMed]

2 C. A. P.Dearaujo, J. D.Cuchiaro, L. D.McMillan, M. C.Scott, J. F.Scott, Nature 1995, 374, 627.

3 R. C. G.Naber, C.Tanase, P. W. M.Blom, G. H.Gelinck, A. W.Marsman, F. J.Touwslager, S.Setayesh, D. M.de Leeuw, Nat. Mater.2005, 4, 243.

4 L. E.Cross, Ferroelectrics 1987, 76, 241.

5 R. E.Cohen, Nature 1992, 358, 136.

6 S.Mathews, R.Ramesh, T.Venkatesan, J.Benedetto, Science 1997, 276, 238.9092468 [PubMed]

7 W.Lee, H.Han, A.Lotnyk, M. A.Schubert, S.Senz, M.Alexe, D.Hesse, S.Baik, U.Gosele, Nat. Nanotechnol.2008, 3, 402.18654563 [PubMed]

8 H.Kishi, Y.Mizuno, H.Chazono, Jpn. J. Appl. Phys.2003, 8, 4.

9 Z.Hu, M.Tian, B.Nysten, A. M.Jonas, Nat. Mater.2009, 8, 62.19060889 [PubMed]

10 L. K.Kang, W.Lee, K. H.Sun, S. H.Joo, S. M.Cho, G.Song, S. H.Cho, B.Jeong, I.Hwang, J. H.Ahn, Nano Lett.2015, 16, 334.26618802 [PubMed]

11 X.Zhang, Y.Shen, B.Xu, Q.Zhang, L.Gu, J.Jiang, J.Ma, Y.Lin, C. W.Nan, Adv. Mater.2016, 28, 2055.26766020 [PubMed]

12 G.Zhang, Q.Li, H.Gu, S.Jiang, K.Han, M. R.Gadinski, M. A.Haque, Q.Zhang, Q.Wang, Adv. Mater.2015, 27, 1450.25581032 [PubMed]

13 Z.Lei, Q.Wang, Macromolecules 2012, 45, 2937.

14 T.Furukawa, Phase Transitions 1989, 18, 143.

15 A. J.Lovinger, Science 1983, 220, 1115.17818472 [PubMed]

49 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue