NiftyNet: a deep-learning platform for medical imaging

Article, Preprint English OPEN
Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I.; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C.; Ourselin, Sébastien; Cardoso, M. Jorge; Vercauteren, Tom;
(2018)
  • Publisher: Elsevier Science Publishers
  • Journal: volume 158, pages 113-122issn: 0169-2607, eissn: 1872-7565
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1016/j.cmpb.2018.01.025, pmc: PMC5869052
  • Subject: Generative adversarial network | Computer Science - Computer Vision and Pattern Recognition | Image regression | Software | Convolutional neural network | Computer Science - Learning | Article | /dk/atira/pure/subjectarea/asjc/1700/1712 | Deep learning | /dk/atira/pure/subjectarea/asjc/2700/2718 | Computer Science Applications | Segmentation | Health Informatics | Medical image analysis, Deep learning, Convolutional neural network, Segmentation, Image regression, Generative adversarial network | Computer Science - Neural and Evolutionary Computing | /dk/atira/pure/subjectarea/asjc/1700/1706 | Medical image analysis
    acm: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION

<p>BACKGROUND AND OBJECTIVES: Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical i... View more
  • References (57)
    57 references, page 1 of 6

    [1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: large-scale machine learning on heterogeneous distributed systems, White Paper, 2016. arXiv: 1603.04467v2.

    [2] B.B. Avants, N.J. Tustison, G. Song, P.A. Cook, A. Klein, J.C. Gee, A reproducible evaluation of ANTs similarity metric performance in brain image registration, Neuroimage 54 (3) (2011) 2033-2044.

    [3] J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization (2016). arXiv:1607.06450v1.

    [4] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I.J. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio, Theano: new features and speed improvements, in: Proceedings of the Workshop on Deep Learning and Unsupervised Feature Learning NIPS, 2012.

    [5] L. Berger, E. Hyde, M.J. Cardoso, S. Ourselin, An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation, (2017). ArXiv e-prints arXiv:1709.02764.

    [6] M. Brett, M. Hanke, B. Cipollini, M.-A. Côté, C. Markiewicz, S. Gerhard, E. Larson, Nibabel, 2016, Online. doi:10.5281/zenodo.60808.

    [7] N. Burgos, M. Cardoso, K. Thielemans, M. Modat, S. Pedemonte, J. Dickson, A. Barnes, R. Ahmed, J. Mahoney, J. Schott, J. Duncan, D. Atkinson, S. Arridge, B. Hutton, S. Ourselin, Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies, Med. Imaging IEEE Trans. 33 (12) (2014) 2332-2341.

    [8] M. Cardoso, M. Clarkson, M. Modat, S. Ourselin, NiftySeg: open-source software for medical image segmentation, label fusion and cortical thickness estimation, in: Proceedings of the ISBI Workshop on Open Source Medical Image Analysis Software, 2012.

    [9] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cuDNN: efficient primitives for deep learning, arXiv:1410.0759v3.

    [10] F. Chollet, et al., Keras, 2015, https://github.com/fchollet/keras.

  • Related Research Results (6)
  • Related Organizations (3)
  • Metrics