publication . Article . Other literature type . 2019

Cyclodextrin–Amphiphilic Copolymer Supramolecular Assemblies for the Ocular Delivery of Natamycin

Thorsteinn Loftsson; Blanca Lorenzo-Veiga; Hakon H. Sigurdsson; Carmen Alvarez-Lorenzo;
Open Access English
  • Published: 15 May 2019
  • Publisher: MDPI AG
Abstract
s Egg Test on the Chorioallantoic Membrane (HET-CAM) assay. Poly(pseudo)rotaxanes facilitated drug accumulation into the cornea and sclera, but led to lower natamycin permeability through the sclera than the corresponding micelles. Poly(pseudo)rotaxanes made from mixed micelles showed intermediate natamycin diffusion coefficients and permeability values between those of Pluronic P103-based and Soluplus-based poly(pseudo)rotaxanes. Therefore, the preparation of mixed micelles may be a useful tool to regulate drug release and enhance ocular permeability.
Subjects
free text keywords: Block copolymers, Cyclodextrins, Fungal keratitis, HET-CAM assay, Mixed micelles, Natamycin, Ocular drug delivery, Ocular permeability, Poly(pseudo)rotaxane, Solubility, Lyfjafræði, Lyfjagerð, Sýklódextrín, Chemistry, QD1-999, Polyrotaxane, Polypseudorotaxane, Article, medicine.drug, medicine, Chemical engineering, Cyclodextrin, chemistry.chemical_classification, Zeta potential, Permeation, Supramolecular chemistry, Poloxamer, Micelle
Communities
Agricultural and Food Sciences
Download fromView all 6 versions
Opin visindi
Article . 2019
Nanomaterials
Article . 2019
Nanomaterials
Article . 2019
Provider: Crossref
52 references, page 1 of 4

Chang, H.Y., Chodosh, J.. Diagnostic and therapeutic considerations in fungal keratitis. Int. Ophthalmol. Clin.. 2011; 51: 33-42 [OpenAIRE] [PubMed] [DOI]

Mahmoudi, S., Masoomi, A., Ahmadikia, K., Tabatabaei, S.A., Soleimani, M., Rezaie, S., Ghahvechian, H., Banafsheafshan, A.. Fungal keratitis: An overview of clinical and laboratory aspects. Mycoses. 2018; 61: 916-930 [OpenAIRE] [PubMed] [DOI]

Dart, J.K., Stapleton, F., Minassian, D.. Contact lenses and other risk factors in microbial keratitis. Lancet. 1991; 338: 650-653 [PubMed] [DOI]

Green, M., Apel, A., Stapleton, F.. Risk factors and causative organisms in microbial keratitis. Cornea. 2008; 27: 22-27 [PubMed] [DOI]

Austin, A., Lietman, T., Rose-Nussbaumer, J.. Update on the management of infectious keratitis. Ophthalmology. 2017; 124: 1678-1689 [OpenAIRE] [PubMed] [DOI]

Qiu, S., Zhao, G.Q., Lin, J., Wang, X., Hu, L.T., Du, Z.D., Wang, Q., Zhu, C.C.. Natamycin in the treatment of fungal keratitis: A systematic review and Meta-analysis. Int. J. Ophthalmol.. 2015; 8: 597-602 [OpenAIRE] [PubMed] [DOI]

Patil, A., Lakhani, P., Majumdar, S.. Current perspectives on natamycin in ocular fungal infections. J. Drug Deliv. Sci. Technol.. 2017; 41: 206-212 [OpenAIRE] [DOI]

Arora, R., Gupta, D., Goyal, J., Kaur, R.. Voriconazole versus natamycin as primary treatment in fungal corneal ulcers. Clin. Exp. Ophthalmol.. 2011; 39: 434-440 [OpenAIRE] [PubMed] [DOI]

O’Day, D.M., Head, W.S., Robinson, R.D., Clanton, J.A.. Corneal penetration of topical amphotericin B and natamycin. Curr. Eye Res.. 1986; 5: 877-882 [OpenAIRE] [PubMed] [DOI]

Segura, T., Puga, A.M., Burillo, G., Llovo, J., Brackman, G., Coenye, T., Concheiro, A., Alvarez-Lorenzo, C.. Materials with fungi-bioinspired surface for efficient binding and fungi-sensitive release of antifungal agents. Biomacromolecules. 2014; 15: 1860-1870 [OpenAIRE] [PubMed] [DOI]

Cevher, E., Sensoy, D., Zloh, M., Mulazimoglu, L.. Preparation and characterisation of natamycin: Gamma-cyclodextrin inclusion complex and its evaluation in vaginal mucoadhesive formulations. J. Pharm. Sci.. 2008; 97: 4319-4335 [OpenAIRE] [PubMed] [DOI]

Saeed Nihad, A.H., Salami, M.. Study of storage conditions effect (light-heat) on natamycin content and stability in some dairy products (cheese-yoghurt). Clin. Pharmacol. Biopharm.. 2017; 6: 177 [DOI]

Bhatta, R.S., Chandasana, H., Chhonker, Y.S., Rathi, C., Kumar, D., Mitra, K., Shukla, P.K.. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In vitro and pharmacokinetics studies. Int. J. Pharm.. 2012; 432: 105-112 [OpenAIRE] [PubMed] [DOI]

Chandasana, H., Prasad, Y.D., Chhonker, Y.S., Chaitanya, T.K., Mishra, N.N., Mitra, K., Shukla, P.K., Bhatta, R.S.. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: An approach to reduce dose and dosing frequency. Int. J. Pharm.. 2014; 477: 317-325 [OpenAIRE] [PubMed] [DOI]

Patil, A., Lakhani, P., Taskar, P., Wu, K.W., Sweeney, C., Avula, B., Wang, Y.H., Khan, I.A., Majumdar, S.. Formulation development, optimization, and in vitro-in vivo characterization of natamycin-loaded PEGylated nano-lipid carriers for ocular applications. J. Pharm. Sci.. 2018; 107: 2160-2171 [OpenAIRE] [PubMed] [DOI]

52 references, page 1 of 4
Any information missing or wrong?Report an Issue