publication . Other literature type . Article . 2018

Low acclimation capacity of narrow‐ranging thermal specialists exposes susceptibility to global climate change

Markle, Tricia M.; Kozak, Kenneth H.;
  • Published: 01 Apr 2018
  • Publisher: Wiley
Abstract
Abstract Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely‐related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species’ latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 sp...
Subjects
free text keywords: Ecology, Ecology, Evolution, Behavior and Systematics, Nature and Landscape Conservation, Environmental temperature, Acclimatization, Selective advantage, Global warming, Habitat, Range (biology), Critical thermal maximum, Temperate climate, Biology, Original Research, acclimation, geographic range, physiological tolerance, salamanders, standard metabolic rate
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
,
NSF| Collaborative Research: Species delimitation, speciation, and evolution of the niche in slimy salamanders (Plethodontidae: Plethodon)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0949590
  • Funding stream: Directorate for Biological Sciences | Division of Environmental Biology
89 references, page 1 of 6

Adams, D. C. (2007). Organization of Plethodon salamander communities: Guild‐based community assembly. Ecology, 88, 1292–1299. https://doi.org/10.1890/06-0697 17536414 [PubMed]

Addo‐Bediako, A., Chown, S. L., & Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London B: Biological Sciences, 267, 739–745. https://doi.org/10.1098/rspb.2000.1065 [OpenAIRE]

Angert, A. L., Sheth, S., & Paul, J. R. (2011). Incorporating population‐level variation in thermal performance into predictions of geographic range shifts. Integrative and Comparative Biology, 51, 733–750. https://doi.org/10.1093/icb/icr048 21705795 [PubMed]

Angilletta, M. J. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford, UK: Oxford University Press https://doi.org/10.1093/acprof:oso/9780198570875.001.1

Angilletta, M. J., Niewiarowski, P. H., & Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 27, 249–268. https://doi.org/10.1016/S0306-4565(01)00094-8

Bennett, A. F., & Dawson, W. R. (1976). Metabolism In Gans C., & Dawson W. R., (Eds.), Biology of the Reptilia (Vol. 5, pp. 127–224). New York, NY: Academic Press.

Bernardo, J., Ossola, R. J., Spotila, J., & Crandall, K. A. (2007). Interspecies physiological variation as a tool for cross‐species assessments of global warming‐induced endangerment: Validation of an intrinsic determinant of macroecological and phylogeographic structure. Biology Letters, 3, 695–698. https://doi.org/10.1098/rsbl.2007.0259 17711816 [OpenAIRE] [PubMed]

Bernardo, J., & Spotila, J. R. (2006). Physiological constraints on organismal response to global warming: Mechanistic insights from clinally varying populations and implications for assessing endangerment. Biology Letters, 2, 135–139. https://doi.org/10.1098/rsbl.2005.0417 17148347 [OpenAIRE] [PubMed]

Bozinovic, F., Calosi, P., & Spicer, J. I. (2011). Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics, 42, 155–179. https://doi.org/10.1146/annurev-ecolsys-102710-145055

Brattstrom, B. H. (1963). A preliminary review of the thermal requirements of amphibians. Ecology, 44, 238–255. https://doi.org/10.2307/1932171

Brattstrom, B. H. (1968). Thermal acclimation in Anuran amphibians as a function of latitude and altitude. Comparative Biochemistry and Physiology, 24, 93–111. https://doi.org/10.1016/0010-406X(68)90961-4 5689525 [PubMed]

Buckley, L. B., & Huey, R. B. (2016). How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integrative & Comparative Biology, 56, 98–109. https://doi.org/10.1093/icb/icw004 27126981 [PubMed]

Cadena, C. D., Kozak, K. H., Gomez, J. P., Parra, J. L., McCain, C. M., Bowie, R. C. K., … Graham, C. H. (2012). Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society of London B: Biological Sciences, 279, 194–201. https://doi.org/10.1098/rspb.2011.0720

Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C., & Atfield, A. (2010). What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). Journal of Animal Ecology, 79, 194–204. https://doi.org/10.1111/j.1365-2656.2009.01611.x 19761459 [PubMed]

Calosi, P., David, T., Bilton, D. T., & Spicer, J. I. (2008). Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biology Letters, 4, 99–102. https://doi.org/10.1098/rsbl.2007.0408 17986429 [OpenAIRE] [PubMed]

89 references, page 1 of 6
Abstract
Abstract Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely‐related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species’ latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 sp...
Subjects
free text keywords: Ecology, Ecology, Evolution, Behavior and Systematics, Nature and Landscape Conservation, Environmental temperature, Acclimatization, Selective advantage, Global warming, Habitat, Range (biology), Critical thermal maximum, Temperate climate, Biology, Original Research, acclimation, geographic range, physiological tolerance, salamanders, standard metabolic rate
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
,
NSF| Collaborative Research: Species delimitation, speciation, and evolution of the niche in slimy salamanders (Plethodontidae: Plethodon)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0949590
  • Funding stream: Directorate for Biological Sciences | Division of Environmental Biology
89 references, page 1 of 6

Adams, D. C. (2007). Organization of Plethodon salamander communities: Guild‐based community assembly. Ecology, 88, 1292–1299. https://doi.org/10.1890/06-0697 17536414 [PubMed]

Addo‐Bediako, A., Chown, S. L., & Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London B: Biological Sciences, 267, 739–745. https://doi.org/10.1098/rspb.2000.1065 [OpenAIRE]

Angert, A. L., Sheth, S., & Paul, J. R. (2011). Incorporating population‐level variation in thermal performance into predictions of geographic range shifts. Integrative and Comparative Biology, 51, 733–750. https://doi.org/10.1093/icb/icr048 21705795 [PubMed]

Angilletta, M. J. (2009). Thermal adaptation: A theoretical and empirical synthesis. Oxford, UK: Oxford University Press https://doi.org/10.1093/acprof:oso/9780198570875.001.1

Angilletta, M. J., Niewiarowski, P. H., & Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 27, 249–268. https://doi.org/10.1016/S0306-4565(01)00094-8

Bennett, A. F., & Dawson, W. R. (1976). Metabolism In Gans C., & Dawson W. R., (Eds.), Biology of the Reptilia (Vol. 5, pp. 127–224). New York, NY: Academic Press.

Bernardo, J., Ossola, R. J., Spotila, J., & Crandall, K. A. (2007). Interspecies physiological variation as a tool for cross‐species assessments of global warming‐induced endangerment: Validation of an intrinsic determinant of macroecological and phylogeographic structure. Biology Letters, 3, 695–698. https://doi.org/10.1098/rsbl.2007.0259 17711816 [OpenAIRE] [PubMed]

Bernardo, J., & Spotila, J. R. (2006). Physiological constraints on organismal response to global warming: Mechanistic insights from clinally varying populations and implications for assessing endangerment. Biology Letters, 2, 135–139. https://doi.org/10.1098/rsbl.2005.0417 17148347 [OpenAIRE] [PubMed]

Bozinovic, F., Calosi, P., & Spicer, J. I. (2011). Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics, 42, 155–179. https://doi.org/10.1146/annurev-ecolsys-102710-145055

Brattstrom, B. H. (1963). A preliminary review of the thermal requirements of amphibians. Ecology, 44, 238–255. https://doi.org/10.2307/1932171

Brattstrom, B. H. (1968). Thermal acclimation in Anuran amphibians as a function of latitude and altitude. Comparative Biochemistry and Physiology, 24, 93–111. https://doi.org/10.1016/0010-406X(68)90961-4 5689525 [PubMed]

Buckley, L. B., & Huey, R. B. (2016). How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integrative & Comparative Biology, 56, 98–109. https://doi.org/10.1093/icb/icw004 27126981 [PubMed]

Cadena, C. D., Kozak, K. H., Gomez, J. P., Parra, J. L., McCain, C. M., Bowie, R. C. K., … Graham, C. H. (2012). Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society of London B: Biological Sciences, 279, 194–201. https://doi.org/10.1098/rspb.2011.0720

Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C., & Atfield, A. (2010). What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). Journal of Animal Ecology, 79, 194–204. https://doi.org/10.1111/j.1365-2656.2009.01611.x 19761459 [PubMed]

Calosi, P., David, T., Bilton, D. T., & Spicer, J. I. (2008). Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biology Letters, 4, 99–102. https://doi.org/10.1098/rsbl.2007.0408 17986429 [OpenAIRE] [PubMed]

89 references, page 1 of 6
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Other literature type . Article . 2018

Low acclimation capacity of narrow‐ranging thermal specialists exposes susceptibility to global climate change

Markle, Tricia M.; Kozak, Kenneth H.;