publication . Article . 2020

Association of Plasma Transferrin With Cognitive Decline in Patients With Mild Cognitive Impairment and Alzheimer's Disease.

Jingjing Guan; Peng Wang; Liping Lu; Guanan Zhao;
Open Access English
  • Published: 01 Mar 2020 Journal: Frontiers in Aging Neuroscience, volume 12 (eissn: 1663-4365, Copyright policy)
  • Publisher: Frontiers Media S.A.
: Objective: The objective of this study was to examine whether plasma transferrin levels are associated with longitudinal changes in cognitive performance in older individuals with normal cognition (CN), mild cognitive impairment (MCI), and mild Alzheimer's disease (AD). Methods: At baseline, there were a total of 358 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, including 58 older individuals with CN, 198 older individuals with MCI, and 102 patients with AD. Linear mixed models were utilized to examine the associations of plasma transferrin levels with changes in cognitive performance over time after adjustment of several pot...
Medical Subject Headings: mental disorders
free text keywords: Neuroscience, Original Research, transferrin, iron, Alzheimer’s disease, mild cognitive impairment, longitudinal study, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Ageing, Cognitive Neuroscience
Related Organizations
Funded by
NIH| Alzheimers Disease Neuroimaging Initiative
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1U01AG024904-01
  • Funder: Canadian Institutes of Health Research (CIHR)
24 references, page 1 of 2

Ayton S.Diouf I.Bush A. I.Alzheimer’s disease Neuroimaging Initiative. (2018). Evidence that iron accelerates Alzheimer’s pathology: a CSF biomarker study. J. Neurol. Neurosurg. Psychiatry 89, 456–460. 10.1136/jnnp-2017-316551 28939683 [OpenAIRE] [PubMed] [DOI]

Ayton S.Faux N. G.Bush A. I. (2017a). Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ε4 carriers. JAMA Neurol. 74, 122–125. 10.1001/jamaneurol.2016.4406 27893873 [OpenAIRE] [PubMed] [DOI]

Ayton S.Fazlollahi A.Bourgeat P.Raniga P.Ng A.Lim Y. Y.. (2017b). Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain 140, 2112–2119. 10.1093/brain/awx137 28899019 [OpenAIRE] [PubMed] [DOI]

Ayton S.Faux N. G.Bush A. I.Alzheimer’s Disease Neuroimaging Initiative. (2015). Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat. Commun.6:6760. 10.1038/ncomms7760 25988319 [OpenAIRE] [PubMed] [DOI]

Ayton S.Wang Y.Diouf I.Schneider J. A.Brockman J.Morris M. C.. (2019). Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol. Psychiatry [Epub ahead of print]. 10.1038/s41380-019-0375-7 30778133 [OpenAIRE] [PubMed] [DOI]

Crapper McLachlan D. R.Dalton A. J.Kruck T. P.Bell M. Y.Smith W. L.Kalow W.. (1991). Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337, 1304–1308. 10.1016/0140-6736(91)92978-b 1674295 [OpenAIRE] [PubMed] [DOI]

Diouf I.Fazlollahi A.Bush A. I.Ayton S. (2019). Cerebrospinal fluid ferritin levels predict brain hypometabolism in people with underlying β-amyloid pathology. Neurobiol. Dis. 124, 335–339. 10.1016/j.nbd.2018.12.010 30557658 [OpenAIRE] [PubMed] [DOI]

Fischer P.Götz M. E.Danielczyk W.Gsell W.Riederer P. (1997). Blood transferrin and ferritin in Alzheimer’s disease. Life Sci. 60, 2273–2278. 10.1016/s0024-3205(97)00282-8 9194682 [OpenAIRE] [PubMed] [DOI]

Folstein M. F.Folstein S. E.Mchugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. 10.1016/0022-3956(75)90026-6 1202204 [OpenAIRE] [PubMed] [DOI]

Kawabata H. (2019). Transferrin and transferrin receptors update. Free Radic. Biol. Med. 133, 46–54. 10.1016/j.freeradbiomed.2018.06.037 29969719 [OpenAIRE] [PubMed] [DOI]

Kemp S. F.Creech R. H.Horn T. R. (1984). Glycosylated albumin and transferrin: short-term markers of blood glucose control. J. Pediatr. 105, 394–398. 10.1016/s0022-3476(84)80011-6 6470861 [OpenAIRE] [PubMed] [DOI]

Lane D. J. R.Ayton S.Bush A. I. (2018). Iron and Alzheimer’s disease: an update on emerging mechanisms. J. Alzheimers Dis. 64, S379–S395. 10.3233/JAD-179944 29865061 [OpenAIRE] [PubMed] [DOI]

Moos T.Rosengren Nielsen T.Skjorringe T.Morgan E. H. (2007). Iron trafficking inside the brain. J. Neurochem. 103, 1730–1740. 10.1111/j.1471-4159.2007.04976.x 17953660 [OpenAIRE] [PubMed] [DOI]

Moos T.Skjoerringe T.Gosk S.Morgan E. H. (2006). Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1. J. Neurochem. 98, 1946–1958. 10.1111/j.1471-4159.2006.04023.x 16879716 [OpenAIRE] [PubMed] [DOI]

Morris J. C. (1993). The clinical dementia rating (CDR): current version and scoring rules. Neurology 43, 2412–2414. 10.1212/wnl.43.11.2412-a 8232972 [OpenAIRE] [PubMed] [DOI]

24 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue