publication . Article . Other literature type . 2018

Evaluating effective population size and genetic diversity of a declining kit fox population using contemporary and historical specimens

Robert C. Lonsinger; Jennifer R. Adams; Lisette P. Waits;
Open Access English
  • Published: 01 Nov 2018 Journal: Ecology and Evolution, volume 8, issue 23, pages 12,011-12,021 (eissn: 2045-7758, Copyright policy)
  • Publisher: John Wiley and Sons Inc.
Abstract
Abstract Loss of genetic diversity has serious conservation consequences (e.g., loss of adaptive potential, reduced population viability), but is difficult to evaluate without developing long‐term, multigenerational datasets. Alternatively, historical samples can provide insights into changes in genetic diversity and effective population size (N e). Kit foxes (Vulpes macrotis) are a species of conservation concern across much of their range. In western Utah, kit fox abundance has declined precipitously from historical levels, causing concern about population persistence. We analyzed genetic samples from museum specimens and contemporary scats to evaluate tempora...
Subjects
free text keywords: Original Research, effective population size, gene flow, genetic diversity, kit fox, natural history collections, Vulpes macrotis, Population Risk, Local extinction, Inbreeding depression, Ecology, Vulpes, biology.organism_classification, biology, Population, education.field_of_study, education
Related Organizations
84 references, page 1 of 6

Anderson, E. C., & Dunham, K. K. (2008). The influence of family groups on inferences made with the program Structure. Molecular Ecology Resources, 8(6), 1219–1229. 10.1111/j.1755-0998.2008.02355.x 21586009 [OpenAIRE] [PubMed] [DOI]

Arjo, W. M., Bennett, T. J., & Kozlowski, A. J. (2003). Characteristics of current and historic kit fox (Vulpes macrotis) dens in the Great Basin Desert. Canadian Journal of Zoology, 81, 96–102.

Arjo, W. M., Gese, E. M., Bennett, T. J., & Kozlowski, A. J. (2007). Changes in kit fox–coyote–prey relationships in the Great Basin Desert, Utah. Western North American Naturalist, 67(3), 389–401. 10.3398/1527-0904(2007)67[389:CIKFRI]2.0.CO;2 [DOI]

Balkenhol, N., Cushman, S. A., Storfer, A. T., & Waits, L. P. (2016). Landscape genetics: Concepts, methods, applications. Hoboken, NJ: John Wiley & Sons.

Berry, O., Sarre, S. D., Farrington, L., & Aitken, N. (2007). Faecal DNA detection of invasive species: The case of feral foxes in Tasmania. Wildlife Research, 34(1), 1–7. 10.1071/WR06082 [DOI]

Boom, R., Sol, C. J., Salimans, M. M., Jansen, C. L., Wertheim‐van Dillen, P. M., & van der Noordaa, J. (1990). Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology, 28(3), 495–503.1691208 [OpenAIRE] [PubMed]

Byerly, P. A., Lonsinger, R. C., Gese, E. M., Kozlowski, A. J., & Waits, L. P. (2018). Resource partitioning between kit foxes (Vulpes macrotis) and coyotes (Canis latrans): A comparison of historical and contemporary dietary overlap. Canadian Journal of Zoology, 96, 497–504.

Casas‐Marce, M., Revilla, E., & Godoy, J. A. (2010). Searching for DNA in museum specimens: A comparison of sources in a mammal species. Molecular Ecology Resources, 10, 502–507. 10.1111/j.1755-0998.2009.02784.x 21565049 [OpenAIRE] [PubMed] [DOI]

Consuegra, S., Verspoor, E., Knox, D., & García De Leániz, C. (2005). Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Conservation Genetics, 6(5), 823–842. 10.1007/s10592-005-9042-4 [OpenAIRE] [DOI]

Cullingham, C. I., Smeeton, C., & White, B. N. (2006). Isolation and characterization of swift fox tetranucleotide microsatellite loci. Molecular Ecology Notes, 7(1), 160–162. 10.1111/j.1471-8286.2006.01565.x [OpenAIRE] [DOI]

Dalton, R. (2003). Natural history collections in crisis as funding is slashed. Nature, 423(6940), 575 10.1038/423575a [OpenAIRE] [DOI]

De Barba, M., Adams, J. R., Goldberg, C. S., Stansbury, C. R., Arias, D., Cisneros, R., & Waits, L. P. (2014). Molecular species identification for multiple carnivores. Conservation Genetics Resources, 6(4), 821–824. 10.1007/s12686-014-0257-x [OpenAIRE] [DOI]

Dempsey, S. J., Gese, E. M., Kluever, B. M., Lonsinger, R. C., & Waits, L. P. (2015). Evaluation of scat deposition transects versus radio telemetry for developing a species distribution model for a rare desert carnivore, the kit fox. PLoS ONE, 10(10), e0138995 10.1371/journal.pone.0138995 26465332 [OpenAIRE] [PubMed] [DOI]

Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: Re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1), 209–214.23992227 [PubMed]

Eckrich, C. A., Warren, M. J., Clark, D. A., Milburn, P. J., Torland, S. J., & Hiller, T. L. (2018). Space use and cover selection of kit foxes (Vulpes macrotis) at their distributional periphery. American Midland Naturalist, 179, 247–260. 10.1674/0003-0031-179.2.247 [OpenAIRE] [DOI]

84 references, page 1 of 6
Abstract
Abstract Loss of genetic diversity has serious conservation consequences (e.g., loss of adaptive potential, reduced population viability), but is difficult to evaluate without developing long‐term, multigenerational datasets. Alternatively, historical samples can provide insights into changes in genetic diversity and effective population size (N e). Kit foxes (Vulpes macrotis) are a species of conservation concern across much of their range. In western Utah, kit fox abundance has declined precipitously from historical levels, causing concern about population persistence. We analyzed genetic samples from museum specimens and contemporary scats to evaluate tempora...
Subjects
free text keywords: Original Research, effective population size, gene flow, genetic diversity, kit fox, natural history collections, Vulpes macrotis, Population Risk, Local extinction, Inbreeding depression, Ecology, Vulpes, biology.organism_classification, biology, Population, education.field_of_study, education
Related Organizations
84 references, page 1 of 6

Anderson, E. C., & Dunham, K. K. (2008). The influence of family groups on inferences made with the program Structure. Molecular Ecology Resources, 8(6), 1219–1229. 10.1111/j.1755-0998.2008.02355.x 21586009 [OpenAIRE] [PubMed] [DOI]

Arjo, W. M., Bennett, T. J., & Kozlowski, A. J. (2003). Characteristics of current and historic kit fox (Vulpes macrotis) dens in the Great Basin Desert. Canadian Journal of Zoology, 81, 96–102.

Arjo, W. M., Gese, E. M., Bennett, T. J., & Kozlowski, A. J. (2007). Changes in kit fox–coyote–prey relationships in the Great Basin Desert, Utah. Western North American Naturalist, 67(3), 389–401. 10.3398/1527-0904(2007)67[389:CIKFRI]2.0.CO;2 [DOI]

Balkenhol, N., Cushman, S. A., Storfer, A. T., & Waits, L. P. (2016). Landscape genetics: Concepts, methods, applications. Hoboken, NJ: John Wiley & Sons.

Berry, O., Sarre, S. D., Farrington, L., & Aitken, N. (2007). Faecal DNA detection of invasive species: The case of feral foxes in Tasmania. Wildlife Research, 34(1), 1–7. 10.1071/WR06082 [DOI]

Boom, R., Sol, C. J., Salimans, M. M., Jansen, C. L., Wertheim‐van Dillen, P. M., & van der Noordaa, J. (1990). Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology, 28(3), 495–503.1691208 [OpenAIRE] [PubMed]

Byerly, P. A., Lonsinger, R. C., Gese, E. M., Kozlowski, A. J., & Waits, L. P. (2018). Resource partitioning between kit foxes (Vulpes macrotis) and coyotes (Canis latrans): A comparison of historical and contemporary dietary overlap. Canadian Journal of Zoology, 96, 497–504.

Casas‐Marce, M., Revilla, E., & Godoy, J. A. (2010). Searching for DNA in museum specimens: A comparison of sources in a mammal species. Molecular Ecology Resources, 10, 502–507. 10.1111/j.1755-0998.2009.02784.x 21565049 [OpenAIRE] [PubMed] [DOI]

Consuegra, S., Verspoor, E., Knox, D., & García De Leániz, C. (2005). Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Conservation Genetics, 6(5), 823–842. 10.1007/s10592-005-9042-4 [OpenAIRE] [DOI]

Cullingham, C. I., Smeeton, C., & White, B. N. (2006). Isolation and characterization of swift fox tetranucleotide microsatellite loci. Molecular Ecology Notes, 7(1), 160–162. 10.1111/j.1471-8286.2006.01565.x [OpenAIRE] [DOI]

Dalton, R. (2003). Natural history collections in crisis as funding is slashed. Nature, 423(6940), 575 10.1038/423575a [OpenAIRE] [DOI]

De Barba, M., Adams, J. R., Goldberg, C. S., Stansbury, C. R., Arias, D., Cisneros, R., & Waits, L. P. (2014). Molecular species identification for multiple carnivores. Conservation Genetics Resources, 6(4), 821–824. 10.1007/s12686-014-0257-x [OpenAIRE] [DOI]

Dempsey, S. J., Gese, E. M., Kluever, B. M., Lonsinger, R. C., & Waits, L. P. (2015). Evaluation of scat deposition transects versus radio telemetry for developing a species distribution model for a rare desert carnivore, the kit fox. PLoS ONE, 10(10), e0138995 10.1371/journal.pone.0138995 26465332 [OpenAIRE] [PubMed] [DOI]

Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: Re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1), 209–214.23992227 [PubMed]

Eckrich, C. A., Warren, M. J., Clark, D. A., Milburn, P. J., Torland, S. J., & Hiller, T. L. (2018). Space use and cover selection of kit foxes (Vulpes macrotis) at their distributional periphery. American Midland Naturalist, 179, 247–260. 10.1674/0003-0031-179.2.247 [OpenAIRE] [DOI]

84 references, page 1 of 6
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2018

Evaluating effective population size and genetic diversity of a declining kit fox population using contemporary and historical specimens

Robert C. Lonsinger; Jennifer R. Adams; Lisette P. Waits;