publication . Master thesis . 2009

Dispersion forces in a four-component density functional theory framework

Pilemalm, Robert;
Open Access English
  • Published: 01 Jan 2009
  • Publisher: Linköpings universitet, Institutionen för fysik, kemi och biologi
  • Country: Sweden
The main purpose of this thesis is to implement the Gauss--Legendre quadrature for the dispersion coefficient. This has been done and can be now be made with different number of points. The calculations with this implementation has shown that the relativistic impact on helium, neon, argon and krypton is largest for krypton, that has the highest charge of its nucleus. It was also seen that the polarizability of neon as a function of the imaginary angular frequency decreases monotonically from a static value.
arXiv: Physics::Atomic and Molecular ClustersPhysics::Atomic Physics
free text keywords: Dispersion force, polarizability, four-component density functional theory, noble gases, Computational physics, Beräkningsfysik
Related Organizations

[3] H.B.G. Casimir and D. Polder. Phys. Rev., 73:360, 1948.

[4] F. Jensen. Introduction to Computational Chemistry. Wiley, 2007.

[5] H. J. Aa. Jensen, T. Saue, L. Visscher, with contributions from V. Bakken, E. Eliav, T. Enevoldsen, T. Fleig, O. Fossgaard, T. Helgaker, J. Laerdahl, C. V. Larsen, P. Norman, J. Olsen, M. Pernpointner, J. K. Pedersen, K. Ruud, P. Salek, J. N. P. van Stralen, J. Thyssen, O. Visser, and T. Winther. Dirac, a relativistic ab initio electronic structure program, release DIRAC04.0 (2004).

[6] A. Jiemchooroj, P. Norman, and B.E. Sernelius. Electric dipole polarizabilities C6 dipole-dipole coefficients for sodium clusters and C60. J. Chem. Phys., 125:124306, 2006.

[7] A. Jiemchooroj, B.E. Sernelius, and P. Norman. C6 dipole dipole dispersion coefficients for the n-alkanes: Test of an additivity procedure. Phys. Rev. A, 69:044701, 2004. [OpenAIRE]

[8] R. A. Kendall, H. Thom, and Jr. Dunning. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave funtions. J. Chem. Phys., 96:6796, 1992. [OpenAIRE]

[9] F. London. Phys. Chem. Abt. B, 11:222, 1930.

[12] P. Norman, A. Jiemchooroj, and B.E. Sernelius. Complex polarization propagator method for calculation of dispersion coefficients of extended π- conjugated systems: The C6 coefficientsof polyacenes and C60. J. Chem. Phys., 123:124312-1, 2005. [OpenAIRE]

[13] K. Olsen and P. Jørgensen. Linear and nonlinear response functions for an exact state and for an MCSFC state. J. Chem. Phys., 82:3235, 1985.

[14] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry. Dover, 1990.

[15] H. Thom and Jr. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 90:1007, 1988.

[16] D.E. Woon, H. Thom, and Jr. Dunning. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys., 98:1358, 1993. [OpenAIRE]

[17] D.E. Woon, H. Thom, and Jr. Dunning. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys., 100:2975, 1994. [OpenAIRE]

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue