publication . Bachelor thesis . 2015

Image Analysis for Nail-fold Capillaroscopy

Vucic, Vladimir;
Open Access English
  • Published: 01 Jan 2015
  • Publisher: KTH, Skolan för elektro- och systemteknik (EES)
  • Country: Sweden
Abstract
Detection of diseases in an early stage is very important since it can make the treatment of patients easier, safer and more ecient. For the detection of rheumatic diseases, and even prediction of tendencies towards such diseases, capillaroscopy is becoming an increasingly recognized method. Nail-fold capillaroscopy is a non-invasive imaging technique that is used for analysis of microcirculation abnormalities that may lead todisease like systematic sclerosis, Reynauds phenomenon and others. The main goal of this master thesis project is to provide new tools and techniques for the analysis of capillaroscopy images from the nail-fold area. Image processing and ma...
Subjects
free text keywords: Image analysis, capillaroscopy
Related Organizations
Download from

2 Related work 5 2.1 Image enhancement and annotation . . . . . . . . . . . . . . . . 5 2.1.1 Image ltering . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Optimal color space selction . . . . . . . . . . . . . . . . . 8 2.1.3 Automatic annotation . . . . . . . . . . . . . . . . . . . . 9 2.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Contrast Limited Adaptive Histogram Equalization . . . . 13 2.2.2 Hough transfrom . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Histogram of oriented gradients . . . . . . . . . . . . . . . 15 2.2.4 Support vector machine . . . . . . . . . . . . . . . . . . . 17

3 Image analysis system 20 3.1 Filtering of capillaries . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Rotation of image . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Width calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Annotation of capillaries . . . . . . . . . . . . . . . . . . . . . . . 27

4 Experimental setup and results 29 4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.1 Filtering, Rotation and Width calculation . . . . . . . . . 31 4.3.2 Annotation of capillaries . . . . . . . . . . . . . . . . . . . 36 tions." Computer vision, graphics, and image processing 39.3 (1987): 355-368.

[26] Duda, Richard O., and Peter E. Hart. "Use of the Hough transformation to detect lines and curves in pictures." Communications of the ACM 15.1 (1972): 11-15.

[27] Matas, Jiri, Charles Galambos, and Josef Kittler. "Robust detection of lines using the progressive probabilistic Hough transform." Computer Vision and Image Understanding 78.1 (2000): 119-137.

[28] Dadal, N. and Triggs, B.: Histogram of Oriented Gradients for Human Detection, In Proceedings of IEEE Conference Computer Vision and Pattern Recognition, San Diego, USA, pages 886-893, June 2005 [30] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297.

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue