publication . Bachelor thesis . 2014

Graphene – A Two-Dimensional Dirac Material

Liu, Danny; Wicklund, Johan;
Open Access English
  • Published: 01 Jan 2014
  • Publisher: KTH, Teoretisk fysik
  • Country: Sweden
Abstract
Graphene is a two-dimensional material, whose popularity has soared in both condensedmatter physics and material science the past decade. Due to its unique properties, graphene can be used in a vast array of new and interesting applications that could fundamentally change the material industry. This report reviews the current research and literature in order to trace the historical development of graphene. Then, in order to better understand the material, the unique properties of graphene are explained and potential applications are listed. From a theoretical physics perspective, the tight-binding approximation is used to calculate the energy bands formed by the...
Related Organizations
Download from
40 references, page 1 of 3

[1] B. C. Brodie. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149:249-259, Jan 1859.

[3] G. Reuss and F. Vogt. Höchstlamellarer kohlenstoff aus graphitoxyhydroxyd. Monatshefte für Chemie, 78:222-242, 1948.

[4] P. R. Wallace. The band theory of graphite. Phys. Rev., 71:622-634, May 1947.

[5] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109-162, Jan 2009.

[6] J. W. McClure. Diamagnetism of graphite. Phys. Rev., 104:666-671, Nov 1956. [OpenAIRE]

[7] J. C. Slonczewski and P. R. Weiss. Band structure of graphite. Phys. Rev., 109:272- 279, Jan 1958. [OpenAIRE]

[8] W. S. Boyle and P. Nozières. Band structure and infrared absorption of graphite. Phys. Rev., 111:782-785, Aug 1958. [OpenAIRE]

[9] W. J. Spry and P. M. Scherer. de haas-van alphen effect in graphite between 3 and 85 kilogauss. Phys. Rev., 120:826-829, Nov 1960.

[10] S. J. Williamson, S. Foner, and M. S. Dresselhaus. De haas-van alphen effect in pyrolytic and single crystal graphite. Carbon, 4(1):29 - 40, 1966.

[11] H. P. Boehm, A. Clauss, G. Fischer, and U. Hofmann. Surface properties of extremely thin graphite lamellae. In Proc. of the Fifth Conference on Carbon, page 73. Pergamon Press, London, 1962.

[12] Mindat. Graphite. see http://www.mindat.org/photo-233436.html. Retrieved 2014-05-12.

[13] Laboratoire de Physique et Modélisation des Milieux Condensés. Graphite structure. see http://lpmmc.grenoble.cnrs.fr/spip.php?article407. Retrieved 2014-05- 12.

[14] Carbon Technologies & Materials. Fullerene. see http://www.fulleren.com/ index6_eng.php. Retrieved 2014-05-12.

[15] Wikipedia. Diamond. see http://en.wikipedia.org/wiki/Diamond. Retrieved 2014-05-12.

[16] Gaia Technologies. Carbon nanotube. see http://www.gaia3d.co.uk/3d-models/ 3d-chemistry/carbon-nanotube/. Retrieved 2014-05-12.

40 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue