publication . Bachelor thesis . 2017

Utvinning av värdefulla metaller från laklösningar från förbrukade NiMH-batterier

Ricknell, Jonas;
Open Access English
  • Published: 01 Jan 2017
  • Publisher: KTH, Skolan för kemivetenskap (CHE)
  • Country: Sweden
Abstract
As the demand on resources is increasing worldwide, the process of recycling material has become more important. The specific recycling of metals used in car batteries, and more specifically in the large batteries used in hybrid electric vehicles, is a rising concern where the industrially implemented recycling processes concerning these batteries that exist today are often highly pollutant and energy consuming. In the present study, an alternative hydrometallurgical recycling process of the previously and to some extent presently widely used battery type for hybrid electric vehicle applications, namely the Nickel Metal Hydride (NiMH) battery, has been investiga...
Subjects
free text keywords: Recycling, Hydrometallurgy, NiMH, Supported liquid membrane, Mixed metal hydroxide, Chemical Engineering, Kemiteknik
Related Organizations
Download from

5 Techniques for Ni and Co recovery 6 5.1 Solvent extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.2 Supported liquid membrane . . . . . . . . . . . . . . . . . . . . . . . 8 5.3 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.4 Electrowinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Precipitation of mixed hydroxide product 18 7.1 Method evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.2.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.2.2 Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.2.3 Experimental procedure . . . . . . . . . . . . . . . . . . . . . 24 7.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 26 7.3 Proposed process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Cathode material synthesis 34 8.1 Method evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.2.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.2.2 Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.2.3 Experimental procedure . . . . . . . . . . . . . . . . . . . . . 38 8.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 39

9 Ni salt production using a supported liquid membrane 40 9.1 Process modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.1.1 Model modifications . . . . . . . . . . . . . . . . . . . . . . . 44 9.1.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 47 9.1.2.1 Constant feed pH . . . . . . . . . . . . . . . . . . . . 49 9.1.2.2 Different stripping solution pH . . . . . . . . . . . . 50 9.1.2.3 Different membrane area . . . . . . . . . . . . . . . . 53 9.2 Proposed process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

16 Metal concentrations and solution pH in the two aqueous solutions in the SLM system as a function of time at a starting stripping pH of pH=-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

17 Metal concentrations and solution pH in the two aqueous solutions in the SLM system as a function of time at a starting stripping pH of pH=0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

18 Metal concentrations and solution pH in the two aqueous solutions in the SLM system as a function of time at a starting stripping pH of pH=1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 25 Process stream compositions of the reagent in the Ni salt production route process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1 Chemical composition of the electrode materials by mass percent (nd = not detected). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Metal concentrations in the resulting NiMH battery leach liquor as obtained from concurrent anode and cathode leaching and REE removal by precipitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Current market values of different end products (2017). . . . . . . . . 15 8 Precipitated fraction of metals after increasing the solution pH to pH=5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14 Metal concentration in the resulting leach solution after the pH increase to pH=5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 17 Metal composition of the mixed hydroxide product in the Ni salt production route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 [4] M.A. Fetcenko, S.R. Ovshinsky, B. Reichman, K. Young, C. Fierro, J. Koch, A. Zallen, W. Mays, and T. Ouchi. Recent advances in nimh battery technology. Journal of Power Sources, 165(2):544 - 551, 2007.

[13] Douglas S Flett. Cobalt-nickel separation in hydrometallurgy: a review. Chemistry for sustainable development, 12:81-91, 2004.

[14] N.B Devi, K.C Nathsarma, and V Chakravortty. Separation and recovery of cobalt(ii) and nickel(ii) from sulphate solutions using sodium salts of d2ehpa, {PC} 88a and cyanex 272. Hydrometallurgy, 49(1-2):47 - 61, 1998.

[62] SCB Statistiska Centralbyrån. Fordonsstatistik. http://www.scb.se/hitta-statistik/statistik-efter-amne/transporter-ochkommunikationer/vagtrafik/fordonsstatistik/. Accessed: 2017-03-31.

[63] C. Pillot Avicenne Energy. The rechargeable battery market and main trends 2014-2025. Presented at 32nd International Battery Seminar and Exhibit. March 9, 2015.

[64] R. Turon, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya. Analysis, synthesis and design of chemical processes. Prentice Hall, 4th edition, 2012.

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue