Integrering av IMU och Velodyne LiDAR i en ICP-SLAM struktur
- Published: 01 Jan 2016
- Publisher: KTH, Optimeringslära och systemteori
- Country: Sweden
1 Introduction 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 SLAM process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Point cloud registration . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Theory 5 2.1 Point Cloud Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Iterative Closest Point . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Generalized ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 The Kalman lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Correction by IMU observation . . . . . . . . . . . . . . . . . . . 11 2.2.2 Correction by point cloud registration . . . . . . . . . . . . . . . . 12 2.3 Modied GICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Sequence optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 Sequence solution method . . . . . . . . . . . . . . . . . . . . . . 17
3 Methods and Implementation 19 3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 3D Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 Forest (Backpack) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.3 Urban (Car) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.4 Countryside (Aerial) . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Test data 1: Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Test data 2,3: Urban . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 Test data 4: Countryside . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 GICP-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 State estimation and update . . . . . . . . . . . . . . . . . . . . . 29 3.3.3 Point cloud registration . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.4 Sequence optimization . . . . . . . . . . . . . . . . . . . . . . . . 31
[1] Andreas A. Nuchter, Kai Lingemann, Joachim Hertzberg, and Hartmut Surmann. 6d slam 3d mapping outdoor environments. Journal of Field Robotics , 24(8-9):699722, 2007.
[2] A. Aditya. Implementation of a 4d fast slam including volumetric sum of the uav. In Sensing Technology (ICST), 2012 Sixth International Conference on , pages 7884. Institute of Electrical & Electronics Engineers (IEEE), Dec 2012.
[3] M Alpen, C Willrodt, K Frick, and J Horn. On-board slam for indoor uav using a laser range nder. In SPIE Defense, Security, and Sensing , pages 769213769213. International Society for Optics and Photonics, 2010. [OpenAIRE]
[4] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Robotics-DL tentative, pages 586606. International Society for Optics and Photonics, 1992.
[5] C. G. BROYDEN. The convergence of a class of double-rank minimization algorithms 1. general considerations. IMA Journal of Applied Mathematics , 6(1):7690, 1970. [OpenAIRE]
[6] M. Bryson and Salah Sukkarieh. Active airborne localisation and exploration in unknown environments using inertial slam. In Aerospace Conference, 2006 IEEE , pages 13 pp., 2006. [OpenAIRE]
[7] F. Caballero, L. Merino, J. Ferruz, and A. Ollero. Vision-based odometry and slam for medium and high altitude ying uavs. Journal of Intelligent and Robotic Systems , 54(1):137161, 2008. [OpenAIRE]
[8] A. Censi. An icp variant using a point-to-line metric. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on , pages 1925, May 2008. [OpenAIRE]
[9] G. Conte G. Scaradozzi D. Zanoli S. M. Gambella L. & Marani. Underwater slam with icp localization and neural network objects classication. International Society of Oshore and Polar Engineers. , 2008. [OpenAIRE]
[10] D.W. Eggert, A. Lorusso, and R.B. Fisher. Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications , 9(5):272290.
[11] Karl Pearson F.R.S. Liii. on lines and planes of closest t to systems of points in space. Philosophical Magazine Series 6 , 2(11):559572, 1901.
[13] Kyuseo Han, C. Aeschliman, J. Park, A. C. Kak, Hyukseong Kwon, and D. J. Pack. Uav vision: Feature based accurate ground target localization through propagated initializations and interframe homographies. In Robotics and Automation (ICRA), 2012 IEEE International Conference on , pages 944950, May 2012.