publication . Preprint . 2021

Trou spectral dans les groupes simples

de Saxcé, Nicolas; He, Weikun;
Open Access French
  • Published: 10 Nov 2021
  • Country: France
Nous montrons la propri\'et\'e du trou spectral pour la famille des graphes de Cayley obtenus par r\'eduction modulo $q$ d'un sous-groupe de $\mathrm{SL}_d(\mathbb{Z})$ dont l'adh\'erence de Zariski est un $\mathbb{Q}$-groupe simple. -- We show a spectral gap property for the family of Cayley graphs obtained by reduction modulo $q$ of a subgroup of $\mathrm{SL}_d(\mathbb{Z})$ whose Zariski closure is a simple $\mathbb{Q}$-group.
Comment: in French
free text keywords: Mathematics - Group Theory, [MATH]Mathematics [math]
Funded by
EC| HomDyn
Homogenous dynamics, arithmetic and equidistribution
  • Funder: European Commission (EC)
  • Project Code: 833423
  • Funding stream: H2020 | ERC | ERC-ADG
17 references, page 1 of 2

[16] Jean Bourgain and Péter P. Varjú. Expansion in SLd(Z/qZ), q arbitrary. Invent. Math., 188(1) :151-173, 2012.

[17] Emmanuel Breuillard. Approximate subgroups and super-strong approximation. In Groups St Andrews 2013, volume 422 of London Math. Soc. Lecture Note Ser., pages 1-50. Cambridge Univ. Press, Cambridge, 2015.

[18] Gerald B. Folland. A course in abstract harmonic analysis. Boca Raton, FL : CRC Press, 1995.

[19] Michael D. Fried and Moshe Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, third edition, 2008. Revised by Jarden.

[20] G. Frobenius. Über Gruppencharaktere. Berl. Ber., 1896 :985-1021, 1896.

[21] W. T. Gowers. Quasirandom groups. Combin. Probab. Comput., 17(3) :363- 387, 2008.

[22] Weikun He and Nicolas de Saxcé. Linear random walks on the torus, 2019. preprint arXiv1910.13421.

[23] Weikun He and Nicolas de Saxcé. Sum-product for real lie groups, 2019. preprint arXiv1806.06375, to appear in Journal of the European Mathematical Society.

[24] H. A. Helfgott. Growth and generation in SL2(Z/pZ)). Ann. Math. (2), 167(2) :601-623, 2008.

[25] Roger E. Howe. Kirillov theory for compact p-adic groups. Pacific J. Math., 73(2) :365-381, 1977.

[26] Vicente Landazuri and Gary M. Seitz. On the minimal degrees of projective representations of the finite Chevalley groups. J. Algebra, 32 :418-443, 1974.

[27] Alexander Lubotzky. Discrete groups, expanding graphs and invariant measures. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2010. With an appendix by Jonathan D. Rogawski, Reprint of the 1994 edition. [OpenAIRE]

[28] C. R. Matthews, L. N. Vaserstein, and B. Weisfeiler. Congruence properties of Zariski-dense subgroups. I. Proc. London Math. Soc. (3), 48(3) :514-532, 1984.

[29] Madhav V. Nori. On subgroups of GLn(Fp). Invent. Math., 88(2) :257-275, 1987.

[30] A. Salehi Golsefidy and Péter P. Varjú. Expansion in perfect groups. Geom. Funct. Anal., 22(6) :1832-1891, 2012.

17 references, page 1 of 2
Any information missing or wrong?Report an Issue