Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

H2020 Project K-PLEX: WP4 Report on Data, Knowledge Organisation and Epistemics

Authors: Lehmann, Jörg; Stodulka, Thomas; Huber, Elisabeth;

H2020 Project K-PLEX: WP4 Report on Data, Knowledge Organisation and Epistemics

Abstract

This report on Data, Knowledge Organisation, and Epistemic Impact covers the findings of WP 4 of the K-PLEX project. It focuses on data collection, production, and analysis in a broad range of scientific disciplines, on epistemologies and methodologies, and research organisation. The cross-disciplinary research topic “emotions” has been chosen to ensure comparability across disciplines and to investigate different epistemic cultures. Findings are based on a survey with 123 responses and 15 expert interviews. Results show the heterogeneity of research approaches and epistemic dissonances resulting from a broad variety of epistemic cultures in emotion research. Datafication – the rendering of real-world phenomena into data – inevitably leads to a reduction of complexity of the research object “emotions”. This simplification results from the limitations imposed by the epistemologies and the biases inherent to methodological decisions. The dissection into various disciplines and epistemic cultures and the challenges of interdisciplinarity further the marginalisation of complexity. Interdisciplinarity in emotion research was deemed as both beneficial and demanding. While interdisciplinary research projects were seen to be fruitful on a theoretical and conceptual level, the development of research methodologies that enable data structures which can be aggregated into larger data sets proved to be challenging. Data structures are designed according to methodological requirements and not to ensure reusability. Structural factors like the difficulties of research organisation in large-scale interdisciplinary research units, or the lack of high-ranked journals publishing interdisciplinary results further impede such research endeavours. Data cannot be seen independently from the context in which they were constructed and collected. The narrower context of the research setting and of the researcher as well as the wider contexts of the historical, political, social, cultural and linguistic circumstances of data collection have thus to be considered. The omission of contexts and the lack of comprehensive theoretical frameworks form considerable barriers to data aggregation and have consequences for data storage, sharing and reuse. A multiplicity of epistemologies and methodologies leads to a plurality of data and metadata formats and to a reduced acceptance of standard formats like the W3C standard EmotionML. In the case of data on emotions, further barriers are formed by legal restrictions or ethical issues in data sharing. Research participants showed cautiousness with respect to Big Data opening up new research possibilities. Big Data are not collected according to a specific research question or methodology and are thus antecedent to the epistemological process. This can be seen as a major difference between Big Data and research data. Moreover, Big Data are investigated in an exploratory process dominated by serendipitous findings, an approach that runs counter to scientists’ conception of a steered navigation of the research process. Concise recommendations on how these conflicting epistemologies could be combined in terms of integrative datafication standards, infrastructure and methodologies are outlined.

Country
France
Keywords

[SHS.HISPHILSO]Humanities and Social Sciences/History, Philosophy and Sociology of Sciences, STS Studies, [SHS.STAT]Humanities and Social Sciences/Methods and statistics, data, [INFO.INFO-CY]Computer Science [cs]/Computers and Society [cs.CY], [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [SHS.PSY]Humanities and Social Sciences/Psychology, epistemics, [INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC], [SHS.ANTHRO-SE]Humanities and Social Sciences/Social Anthropology and ethnology, knowledge organisation, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]

2. Introductory Literature Review .............................................................................................. 7 3.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 3
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
3
Funded by
EC| K-PLEX
Project
K-PLEX
Knowledge Complexity
  • Funder: European Commission (EC)
  • Project Code: 732340
  • Funding stream: H2020 | RIA
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.