publication . Article . 2018

Competition between proton transfer and intermolecular Coulombic decay in water

Clemens Richter; Daniel Hollas; Clara-Magdalena Saak; Marko Förstel; Tsveta Miteva; Melanie Mucke; Olle Björneholm; Nicolas Sisourat; Petr Slavíček; Uwe Hergenhahn;
Open Access English
  • Published: 01 Nov 2018
Abstract
Interatomic or intermolecular Coulombic decay is responsible for the generation of slow electrons in clusters and biological samples. Here the authors use electron–electron coincidence detection to find the competitive roles of proton transfer and ICD that occur on similar time scales in water clusters.
Subjects
arXiv: Physics::Atomic and Molecular Clusters
free text keywords: Physical Chemistry, Fysikalisk kemi, Condensed Matter Physics, Den kondenserade materiens fysik, Article, Science, Q, Excited states, Macromolecules and clusters, Atomic and molecular interactions with photons, [PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus], [PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph], General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry, Proton, Molecular biology, Biology, Excited state, Intermolecular force, Electron, Chemical physics
Funded by
EC| ICDSpec
Project
ICDSpec
Interatomic Coulombic Decay in nanodroplets: towards a novel spectroscopy
  • Funder: European Commission (EC)
  • Project Code: 705515
  • Funding stream: H2020 | MSCA-IF-EF-ST
54 references, page 1 of 4

1. Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778-4781 (1997). [OpenAIRE]

2. Marburger, S., Kugeler, O., Hergenhahn, U. & Möller, T. Experimental evidence for interatomic coulombic decay in Ne clusters. Phys. Rev. Lett. 90, 203401 (2003). [OpenAIRE]

3. Jahnke, T. et al. Experimental observation of interatomic coulombic decay in neon dimers. Phys. Rev. Lett. 93, 163401 (2004).

4. Öhrwall, G. et al. Femtosecond interatomic coulombic decay in free neon clusters: large lifetime differences between surface and bulk. Phys. Rev. Lett. 93, 173401 (2004).

5. Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139-142 (2010).

6. Mucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6, 143-146 (2010).

7. Aziz, E. F., Ottosson, N., Faubel, M., Hertel, I. V. & Winter, B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89-91 (2008).

8. Thürmer, S. et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 5, 590-596 (2013). [OpenAIRE]

9. Slavíček, P., Winter, B., Cederbaum, L. S. & Kryzhevoi, N. V. Proton-transfer mediated enhancement of nonlocal electronic relaxation processes in X-ray irradiated liquid water. J. Am. Chem. Soc. 136, 18170-18176 (2014). [OpenAIRE]

10. Hergenhahn, U. Interatomic and intermolecular coulombic decay: the early years. J. Electron Spectrosc. Relat. Phenom. 184, 78 (2011). [OpenAIRE]

11. Jahnke, T. Interatomic and intermolecular Coulombic decay: the coming of age story. J. Phys. B. At. Mol. Opt. Phys. 48, 082001 (2015).

12. Alizadeh, E. & Sanche, L. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 112, 5578-5602 (2012). [OpenAIRE]

13. Vendrell, O., Stoychev, S. D. & Cederbaum, L. S. Generation of highly damaging H2O+ radicals by inner valence shell ionization of water. Chemphyschem 11, 1006-1009 (2010).

14. Kryzhevoi, N. V. & Cederbaum, L. S. Using ph value to control intermolecular electronic decay. Angew. Chem. Int. Ed. 50, 1306-1309 (2011). [OpenAIRE]

15. Ma, J., Schmidhammer, U., Pernot, P. & Mostafavi, M. Reactivity of the strongest oxidizing species in aqueous solutions: the short-lived radical cation H2O +. J. Phys. Chem. Lett. 5, 258-261 (2014).

54 references, page 1 of 4
Abstract
Interatomic or intermolecular Coulombic decay is responsible for the generation of slow electrons in clusters and biological samples. Here the authors use electron–electron coincidence detection to find the competitive roles of proton transfer and ICD that occur on similar time scales in water clusters.
Subjects
arXiv: Physics::Atomic and Molecular Clusters
free text keywords: Physical Chemistry, Fysikalisk kemi, Condensed Matter Physics, Den kondenserade materiens fysik, Article, Science, Q, Excited states, Macromolecules and clusters, Atomic and molecular interactions with photons, [PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus], [PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph], General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry, Proton, Molecular biology, Biology, Excited state, Intermolecular force, Electron, Chemical physics
Funded by
EC| ICDSpec
Project
ICDSpec
Interatomic Coulombic Decay in nanodroplets: towards a novel spectroscopy
  • Funder: European Commission (EC)
  • Project Code: 705515
  • Funding stream: H2020 | MSCA-IF-EF-ST
54 references, page 1 of 4

1. Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778-4781 (1997). [OpenAIRE]

2. Marburger, S., Kugeler, O., Hergenhahn, U. & Möller, T. Experimental evidence for interatomic coulombic decay in Ne clusters. Phys. Rev. Lett. 90, 203401 (2003). [OpenAIRE]

3. Jahnke, T. et al. Experimental observation of interatomic coulombic decay in neon dimers. Phys. Rev. Lett. 93, 163401 (2004).

4. Öhrwall, G. et al. Femtosecond interatomic coulombic decay in free neon clusters: large lifetime differences between surface and bulk. Phys. Rev. Lett. 93, 173401 (2004).

5. Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139-142 (2010).

6. Mucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6, 143-146 (2010).

7. Aziz, E. F., Ottosson, N., Faubel, M., Hertel, I. V. & Winter, B. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89-91 (2008).

8. Thürmer, S. et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nat. Chem. 5, 590-596 (2013). [OpenAIRE]

9. Slavíček, P., Winter, B., Cederbaum, L. S. & Kryzhevoi, N. V. Proton-transfer mediated enhancement of nonlocal electronic relaxation processes in X-ray irradiated liquid water. J. Am. Chem. Soc. 136, 18170-18176 (2014). [OpenAIRE]

10. Hergenhahn, U. Interatomic and intermolecular coulombic decay: the early years. J. Electron Spectrosc. Relat. Phenom. 184, 78 (2011). [OpenAIRE]

11. Jahnke, T. Interatomic and intermolecular Coulombic decay: the coming of age story. J. Phys. B. At. Mol. Opt. Phys. 48, 082001 (2015).

12. Alizadeh, E. & Sanche, L. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 112, 5578-5602 (2012). [OpenAIRE]

13. Vendrell, O., Stoychev, S. D. & Cederbaum, L. S. Generation of highly damaging H2O+ radicals by inner valence shell ionization of water. Chemphyschem 11, 1006-1009 (2010).

14. Kryzhevoi, N. V. & Cederbaum, L. S. Using ph value to control intermolecular electronic decay. Angew. Chem. Int. Ed. 50, 1306-1309 (2011). [OpenAIRE]

15. Ma, J., Schmidhammer, U., Pernot, P. & Mostafavi, M. Reactivity of the strongest oxidizing species in aqueous solutions: the short-lived radical cation H2O +. J. Phys. Chem. Lett. 5, 258-261 (2014).

54 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue