publication . Article . Preprint . 2020

Excellent electronic transport in heterostructures of graphene and monoisotopic boron-nitride grown at atmospheric pressure

J Sonntag; J Li; A Plaud; A Loiseau; J Barjon; J H Edgar; C Stampfer;
Open Access English
  • Published: 01 Jan 2020
  • Publisher: HAL CCSD
Hexagonal boron nitride (BN), one of the very few layered insulators, plays a crucial role in 2D materials research. In particular, BN grown with a high pressure technique has proven to be an excellent substrate material for graphene and related 2D materials, but at the same time very hard to replace. Here we report on a method of growth at atmospheric pressure as a true alternative for producing BN for high quality graphene/BN heterostructures. The process is not only more scalable, but also allows to grow isotopically purified BN crystals. We employ Raman spectroscopy, cathodoluminescence, and electronic transport measurements to show the high-quality of such ...
arXiv: Condensed Matter::Materials ScienceCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci], Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Materials Science, ddc:530, Mechanical Engineering, General Materials Science, Mechanics of Materials, General Chemistry, Condensed Matter Physics
Funded by
EC| GrapheneCore2
Graphene Flagship Core Project 2
  • Funder: European Commission (EC)
  • Project Code: 785219
  • Funding stream: H2020 | SGA-RIA
2D Materials for Quantum Technology
  • Funder: European Commission (EC)
  • Project Code: 820254
  • Funding stream: H2020 | ERC | ERC-COG
FET H2020FET FLAG: Graphene FET Flagship core project
FET H2020FET FLAG: Graphene Flagship Core Project 2
55 references, page 1 of 4

Corresponding author: [1] P. Ajayan, P. Kim, and K. Banerjee, Phys. Today 69,

38 (2016). [2] A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013). [3] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. [OpenAIRE]

Castro Neto, Science 353, aac9439 (2016). [4] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta,

and J. E. Goldberger, ACS Nano 7, 2898 (2013). [5] N. Mounet, M. Gibertini, P. Schwaller, D. Campi,

pellotti, G. Pizzi, and N. Marzari, Nat. Nanotechnol. 13,

246 (2018). [6] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S.

Mortensen, T. Olsen, and K. S. Thygesen, 2D Mater. 5,

042002 (2018). [7] X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forro, J. Shan,

and K. F. Mak, Nat. Nanotechnol. 10, 765 (2015). [8] Y. Cao, A. Mishchenko, G. L. Yu, E. Khestanova, A. P.

and R. V. Gorbachev, Nano Lett. 15, 4914 (2015). [9] M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappat-

M. Batzill, Nat. Nanotechnol. 13, 289 (2018). [10] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein,

Herrero, and X. Xu, Nature 546, 270 (2017). [11] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang,

K. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722

(2010). [12] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran,

Science 342, 614 (2013). [13] J. Dauber, A. A. Sagade, M. Oellers, K. Watanabe,

55 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue