publication . Other literature type . Article . 2015

Renewable polymers derived from ferulic acid and biobased diols via ADMET

Barbara, Imane; Flourat, Amandine L.; Allais, Florent;
  • Published: 01 Jan 2015
  • Publisher: Elsevier BV
Abstract
International audience; Renewable α,ω-diene monomers have been prepared from ferulic acid, biosourced diols (isosorbide and butanediol) and bromo-alkenes using a chemo-enzymatic synthetic pathway then studied as monomers in ADMET polymerization. All monomers and polymers have been thoroughly characterized using NMR, GPC, DSC and TGA. ADMET polymerization was optimized with regard to catalyst loading (Hoveyda–Grubbs II), reaction medium (in mass vs. in solvent), and temperature, which led to polymers with molecular weight up to 25 kDa. Thermal analysis of these new poly(ester-alkenamer)s showed excellent thermal stabilities (283–370 °C) and tunable Tg depending o...
Subjects
free text keywords: Polyesters, ADMET polymerization, alpha,omega-Dienes, Ferulic acid, Bisphenol, Lignocellulose, CASTOR-OIL, POLYMERIZATION, POLYETHYLENE, DERIVATIVES, METATHESIS, POLYURETHANES, DEGRADATION, SOLVENT, POLYOLS, [CHIM.POLY]Chemical Sciences/Polymers, Organic Chemistry, General Physics and Astronomy, Polymers and Plastics, Polymer chemistry, Monomer, chemistry.chemical_compound, chemistry, Polyester, Isosorbide, medicine.drug, medicine, Diol, Butanediol, Materials science, Polymer, chemistry.chemical_classification
20 references, page 1 of 2

1. a) J. J. Bozell, J. O. Hoberg, et al. In Green Chemistry - Frontiers in Benign Chemical Synthesis and Processes, Oxford University, 1998, p. 27-45; b) C. Okkerse, H. van Bekkum, Green Chem. 1999, 1, 107; c) D. L. Klass In Biomass for Renewable Energy, Fuels, and Chemicals - Academic Press, 1998, p. 91-157, p. 495-542

2. L. Mialon, A. G. Pemba and S. A. Miller, Green Chem. 2010, 12, 1704

3. J. Palacios, C. Perez, New Polym. Mat. 1990, 2, 167

4. H. G. Elias, J. A. Palacios, Makromol. Chem. 1985, 5, 1027

5. a) T. Kaneko, M. Matsuaki, T. T. Hang and M. Akashi, Macromol. Rapid Commun. 2004, 25, 673-677; b) Y. Tanaka, T. Tanabe, Y. Shimura, A. Okada, J. Polym. Sci. B Polym. Lett. Ed. 1975, 13, 235; c) B. Sapich and J. Stumpe, Macromolecules 1998, 31, 1016; d) J. Stumpe, A. Ziegler, Macromolecules 1995, 28, 5306; e) X. Jin, C. Carfagna, L. Nicolais, R. Lanzetta, Macromolecules 1995, 28, 4785; f) S. Wang, D. Kaneko, K. Kan, X. Jin, T. Kaneko, Pure Appl. Chem. 2012, 12, 2559; g) N. Hatanaka, H. Okawa, KR Patent 2013006318; 2013; h) Q. Zhao, W. Wu, Polymer 2009, 4, 998

6. a) J. Du, Y. Fang, Y. Zheng Polymer 2007, 19, 5541; b) M. A. Ouimet, J. Griffin, A. L. Carbone-Howell, L. Ashley, W.-H. Wu, N. D. Stebbins, R. Di, K. E. Uhrich, Biomacromolecules 2013, 14(3), 854

7. a) M. Quentin, V. Allasia, A. Pegard, F. Allais, P.-H. Ducrot, B. Favery, C. Levis, S. Martinet, C. Masur, M. Ponchet, D. Roby, L. Schlaich, L. Jouanin, H. Keller, PLoS Pathog. 2009, 5(1) doi: 10.1371/journal.ppat.1000264; b) F. Allais, M. Aouhansou, A. Majira, P.-H. Ducrot, Synthesis 2010, 16, 2787; c) F. Allais, P.-H. Ducrot, Synthesis 2010, 16, 1649; d) L. M. M. Mouterde, A. L. Flourat, M. M. M. Cannet, P.-H Ducrot, F. Allais, Eur. J. Org. Chem. 2013, 1, 173; e) B. Cottyn, A. Kollman, P. Waffo Teguo, P.-H. Ducrot, Chem. Eur. J. 2011, 17, 7282; f) J. C. Dean, R. Kusaka, P. S. Walsh, F. Allais, T. S. Zwier, J. Am. Chem. Soc. 2014, 136, 14780

8. F. Pion, A. F. Reano, P.-H. Ducrot and F. Allais, RSC Adv. 2013, 3, 8988

9. F. Pion, P.-H. Ducrot and F. Allais, Macromol. Chem. Phys. 2014, 215, 431

10. M. Z. Oulame, F. Pion, P.-H. Ducrot, F. Allais Eur. Polym. J. 2014, accepted

11. H. Mutlu, L. M. de Espinosa, M. A. R. Meier, Chem. Soc. Rev. 2011, 40, 1404

12. a) O. Kreye, T. Tóth, M. A. R. Meier, Eur. Polym. J. 2011, 47, 1804; b) H. Mutlu, M. A. R. Meier, Macromol. Chem. Phys. 2009, 210, 1019; c) L. M. de Espinosa, M. A. R. Meier, J. C. Ronda, M.Galià, V. Cadiz, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 1649; d) T. W. Baughman; K. B. Wagener, Adv. Polym. Sci. 2005, 176, 1; e) O. Türünç, L. M. de Espinosa, M. A. R. Meier, Macromol. Rapid. Commun. 2011, 32, 1357; f) S. Günther, P. Lamprecht, G. A. Luinstra, Macromol. Symp. 2010, 293, 15; g) M. Firdaus, M. A. R. Meier, Eur. Polym. J. 2013, 49, 156

13. T. Carde, DOE/GO-102001-1461; New Continuous Isosorbide Production From Sorbitol: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet, 2012

14. J. Adelman, L. F. Charbonneau and S. Ung 2003. US Patent 6, 656, 577, 2003, USA

15. a) S. Kobayashi, Macromol. Rapid. Commun. 2009, 30, 237; b) H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk, S. Van Dien, Nat. Chem. Biol. 2011, 7, 445; c) S. Schauhoff, W. Schmidt, Chem. Fibers Int. 1996, 46, 263; d) D. R. Kelsey US Patent 6,093,786; 2000

20 references, page 1 of 2
Abstract
International audience; Renewable α,ω-diene monomers have been prepared from ferulic acid, biosourced diols (isosorbide and butanediol) and bromo-alkenes using a chemo-enzymatic synthetic pathway then studied as monomers in ADMET polymerization. All monomers and polymers have been thoroughly characterized using NMR, GPC, DSC and TGA. ADMET polymerization was optimized with regard to catalyst loading (Hoveyda–Grubbs II), reaction medium (in mass vs. in solvent), and temperature, which led to polymers with molecular weight up to 25 kDa. Thermal analysis of these new poly(ester-alkenamer)s showed excellent thermal stabilities (283–370 °C) and tunable Tg depending o...
Subjects
free text keywords: Polyesters, ADMET polymerization, alpha,omega-Dienes, Ferulic acid, Bisphenol, Lignocellulose, CASTOR-OIL, POLYMERIZATION, POLYETHYLENE, DERIVATIVES, METATHESIS, POLYURETHANES, DEGRADATION, SOLVENT, POLYOLS, [CHIM.POLY]Chemical Sciences/Polymers, Organic Chemistry, General Physics and Astronomy, Polymers and Plastics, Polymer chemistry, Monomer, chemistry.chemical_compound, chemistry, Polyester, Isosorbide, medicine.drug, medicine, Diol, Butanediol, Materials science, Polymer, chemistry.chemical_classification
20 references, page 1 of 2

1. a) J. J. Bozell, J. O. Hoberg, et al. In Green Chemistry - Frontiers in Benign Chemical Synthesis and Processes, Oxford University, 1998, p. 27-45; b) C. Okkerse, H. van Bekkum, Green Chem. 1999, 1, 107; c) D. L. Klass In Biomass for Renewable Energy, Fuels, and Chemicals - Academic Press, 1998, p. 91-157, p. 495-542

2. L. Mialon, A. G. Pemba and S. A. Miller, Green Chem. 2010, 12, 1704

3. J. Palacios, C. Perez, New Polym. Mat. 1990, 2, 167

4. H. G. Elias, J. A. Palacios, Makromol. Chem. 1985, 5, 1027

5. a) T. Kaneko, M. Matsuaki, T. T. Hang and M. Akashi, Macromol. Rapid Commun. 2004, 25, 673-677; b) Y. Tanaka, T. Tanabe, Y. Shimura, A. Okada, J. Polym. Sci. B Polym. Lett. Ed. 1975, 13, 235; c) B. Sapich and J. Stumpe, Macromolecules 1998, 31, 1016; d) J. Stumpe, A. Ziegler, Macromolecules 1995, 28, 5306; e) X. Jin, C. Carfagna, L. Nicolais, R. Lanzetta, Macromolecules 1995, 28, 4785; f) S. Wang, D. Kaneko, K. Kan, X. Jin, T. Kaneko, Pure Appl. Chem. 2012, 12, 2559; g) N. Hatanaka, H. Okawa, KR Patent 2013006318; 2013; h) Q. Zhao, W. Wu, Polymer 2009, 4, 998

6. a) J. Du, Y. Fang, Y. Zheng Polymer 2007, 19, 5541; b) M. A. Ouimet, J. Griffin, A. L. Carbone-Howell, L. Ashley, W.-H. Wu, N. D. Stebbins, R. Di, K. E. Uhrich, Biomacromolecules 2013, 14(3), 854

7. a) M. Quentin, V. Allasia, A. Pegard, F. Allais, P.-H. Ducrot, B. Favery, C. Levis, S. Martinet, C. Masur, M. Ponchet, D. Roby, L. Schlaich, L. Jouanin, H. Keller, PLoS Pathog. 2009, 5(1) doi: 10.1371/journal.ppat.1000264; b) F. Allais, M. Aouhansou, A. Majira, P.-H. Ducrot, Synthesis 2010, 16, 2787; c) F. Allais, P.-H. Ducrot, Synthesis 2010, 16, 1649; d) L. M. M. Mouterde, A. L. Flourat, M. M. M. Cannet, P.-H Ducrot, F. Allais, Eur. J. Org. Chem. 2013, 1, 173; e) B. Cottyn, A. Kollman, P. Waffo Teguo, P.-H. Ducrot, Chem. Eur. J. 2011, 17, 7282; f) J. C. Dean, R. Kusaka, P. S. Walsh, F. Allais, T. S. Zwier, J. Am. Chem. Soc. 2014, 136, 14780

8. F. Pion, A. F. Reano, P.-H. Ducrot and F. Allais, RSC Adv. 2013, 3, 8988

9. F. Pion, P.-H. Ducrot and F. Allais, Macromol. Chem. Phys. 2014, 215, 431

10. M. Z. Oulame, F. Pion, P.-H. Ducrot, F. Allais Eur. Polym. J. 2014, accepted

11. H. Mutlu, L. M. de Espinosa, M. A. R. Meier, Chem. Soc. Rev. 2011, 40, 1404

12. a) O. Kreye, T. Tóth, M. A. R. Meier, Eur. Polym. J. 2011, 47, 1804; b) H. Mutlu, M. A. R. Meier, Macromol. Chem. Phys. 2009, 210, 1019; c) L. M. de Espinosa, M. A. R. Meier, J. C. Ronda, M.Galià, V. Cadiz, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 1649; d) T. W. Baughman; K. B. Wagener, Adv. Polym. Sci. 2005, 176, 1; e) O. Türünç, L. M. de Espinosa, M. A. R. Meier, Macromol. Rapid. Commun. 2011, 32, 1357; f) S. Günther, P. Lamprecht, G. A. Luinstra, Macromol. Symp. 2010, 293, 15; g) M. Firdaus, M. A. R. Meier, Eur. Polym. J. 2013, 49, 156

13. T. Carde, DOE/GO-102001-1461; New Continuous Isosorbide Production From Sorbitol: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet, 2012

14. J. Adelman, L. F. Charbonneau and S. Ung 2003. US Patent 6, 656, 577, 2003, USA

15. a) S. Kobayashi, Macromol. Rapid. Commun. 2009, 30, 237; b) H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk, S. Van Dien, Nat. Chem. Biol. 2011, 7, 445; c) S. Schauhoff, W. Schmidt, Chem. Fibers Int. 1996, 46, 263; d) D. R. Kelsey US Patent 6,093,786; 2000

20 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Other literature type . Article . 2015

Renewable polymers derived from ferulic acid and biobased diols via ADMET

Barbara, Imane; Flourat, Amandine L.; Allais, Florent;