Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model

Article English OPEN
Kramkov , Dmitry; Pulido , Sergio;
(2016)
  • Publisher: SIAM
  • Subject: JEL : G - Financial Economics/G.G1 - General Financial Markets/G.G1.G12 - Asset Pricing • Trading Volume • Bond Interest Rates | [ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] | JEL : D - Microeconomics/D.D5 - General Equilibrium and Disequilibrium/D.D5.D53 - Financial Markets | [ QFIN.PM ] Quantitative Finance [q-fin]/Portfolio Management [q-fin.PM] | [ QFIN.TR ] Quantitative Finance [q-fin]/Trading and Market Microstructure [q-fin.TR] | JEL : C - Mathematical and Quantitative Methods/C.C6 - Mathematical Methods • Programming Models • Mathematical and Simulation Modeling/C.C6.C62 - Existence and Stability Conditions of Equilibrium | stability of quadratic BSDEs | price impact | multi-dimensional quadratic BSDEs | liquidity | [ QFIN.CP ] Quantitative Finance [q-fin]/Computational Finance [q-fin.CP] | asymptotic behavior of quadratic BSDEs

International audience; We obtain stability estimates and derive analytic expansions for local solutions of multi-dimensional quadratic BSDEs. We apply these results to a financial model where the prices of risky assets are quoted by a representative dealer in such a wa... View more
  • References (19)
    19 references, page 1 of 2

    [1] Philippe Briand and Romuald Elie. A simple constructive approach to quadratic BSDEs with or without delay. Stochastic Process. Appl., 123 (8):2921{2939, 2013. ISSN 0304-4149. doi: 10.1016/j.spa.2013.02.013. URL http://dx.doi.org/10.1016/j.spa.2013.02.013.

    [2] Philippe Briand and Ying Hu. BSDE with quadratic growth and unbounded terminal value. Probab. Theory Related Fields, 136(4):604{ 618, 2006. ISSN 0178-8051. doi: 10.1007/s00440-006-0497-0. URL http://dx.doi.org/10.1007/s00440-006-0497-0.

    [4] Patrick Cheridito and Kihun Nam. Multidimensional quadratic and subquadratic BSDEs with special structure. Stochastics, 87(5):871{884, 2015. doi: 10.1080/17442508.2015.1013959. URL http://dx.doi.org/ 10.1080/17442508.2015.1013959.

    [5] Rama Cont and Yi Lu. Weak approximation of martingale representations. Stochastic Process. Appl., 126(3):857{882, 2016. doi: http://dx. doi.org/10.1016/j.spa.2015.10.002. URL http://www.sciencedirect. com/science/article/pii/S0304414915002501.

    [6] R. W. R. Darling. Constructing gamma-martingales with prescribed limit, using backwards SDE. Ann. Probab., 23(3):1234{1261, 1995. doi: 10.1214/aop/1176988182. URL http://dx.doi.org/10.1214/ aop/1176988182.

    [7] Freddy Delbaen and Shanjian Tang. Harmonic analysis of stochastic equations and backward stochastic di erential equations. Probab. Theory Related Fields, 146(1):291{336, 2008. doi: 10.1007/s00440-008-0191-5. URL http://dx.doi.org/10.1007/ s00440-008-0191-5.

    [8] Nicole El-Karoui and Said Hamadene. BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations. Stochastic Process. Appl., 107(1):145{169, 2003. doi: http://dx.doi.org/10.1016/S0304-4149(03)00059-0. URL http://www. sciencedirect.com/science/article/pii/S0304414903000590.

    [9] Christoph Frei. Splitting multidimensional BSDEs and nding local equilibria. Stochastic Process. Appl., 124(8):2654{2671, 2014. ISSN 0304-4149. doi: 10.1016/j.spa.2014.03.004. URL http://dx.doi.org/ 10.1016/j.spa.2014.03.004.

    [10] Christoph Frei and Goncalo dos Reis. A nancial market with interacting investors: does an equilibrium exist? Math. Financ. Econ., 4(3): 161{182, 2011. ISSN 1862-9679. doi: 10.1007/s11579-011-0039-0. URL http://dx.doi.org/10.1007/s11579-011-0039-0.

    [11] Nicolae Garleanu, Lasse Heje Pedersen, and Allen M. Poteshman. Demand-based option pricing. Rev. Financ. Stud., 22(10):4259{4299, 2009. doi: 10.1093/rfs/hhp005.

  • Similar Research Results (1)
  • Related Organizations (1)
  • Metrics
Share - Bookmark