Powered by OpenAIRE graph
Found an issue? Give us feedback
HAL UPECarrow_drop_down
HAL UPEC
Other literature type . 2009
Data sources: HAL UPEC
Hyper Article en Ligne
Other literature type . 2009
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis the flash floods occured in the South Tyne river watershed (United Kingdom) on the 17th of July 2007

Authors: Bain, Valérie; Milan, D.; Preciso, E.; Gaume, Eric;

Analysis the flash floods occured in the South Tyne river watershed (United Kingdom) on the 17th of July 2007

Abstract

On the 17th, 19th and 23rd of July 2007, a series of local thunderstorms induced flash floods in the upper part of the South Tyne river in Northumberland, a rural area located near the border between England and Scotland. These events led to moderate damages in the villages and losses of livestock in local farms. They were shadowed in comparison to the widespread lowland floods that occurred throughout the UK during the same period but were nevertheless extreme events for the region. One of the affected streams, the Thinhope Burn, has been surveyed by the University of Gloucestershire during recent years. It is an active river from a geomorphological point of view. A survey conducted after the 2007 flood revealed that many of the boulders along the banks of the river, which had been deposited 50 to 100 years before, had been displaced, indicating a high return period for the flood (see EGU abstract EGU2008-A-04713). A complementary survey was conducted in July 2008 with the objective of gathering information on the discharges, the rainfall amounts and the active runoff processes. 14 cross-sections were surveyed, pictures were collected enabling a validation of peak discharge estimates, 5 witnesses were interviewed and additional rainfall data and geomorphological evidence were collected. This survey revealed that the peak discharges exceeded 5 m3/s/km2 in the most affected areas. Unfortunately, no rainfall measurements are available that would enable further analysis, including the computation of runoff rates. Nevertheless, witness accounts and field observations give a good insight into the hydrological processes indicating a significant initial storage capacity of the peat layer covering the affected watersheds. Concerning the boulders, the field observations suggest surprising and unexplained transport processes. Blocks of up to one meter diameter were displaced over short distances and deposited on the river banks without any sign of established debris flow, as if short debris pulses occurred along the river course. This work is conducted within the European research project HYDRATE (Contract GOCE 037024).

Country
France
Related Organizations
Keywords

INONDATION, [SDE.MCG] Environmental Sciences/Global Changes, RISQUE NATUREL, [SDU.STU.HY] Sciences of the Universe [physics]/Earth Sciences/Hydrology, CRUE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
Average
Average
Average
Related to Research communities
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.