Electricity Demand Forecasting Using a Functional State Space Model

Preprint English OPEN
Nagbe , Komi ; Cugliari , Jairo ; Jacques , Julien (2018)
  • Publisher: HAL CCSD
  • Subject: Kalman filtering | Functional principal components analysis | Spline smoothing | Electricity demand forecasting | Functional data | Functional state space model | [ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]

In the last past years the liberalization of the electricity supply, the increase variability of electric appliances and their use, and the need to respond to the electricity demand in the real time had made electricity demand forecasting a challenge. To this challenge,... View more
  • References (13)
    13 references, page 1 of 2

    [1] Antoniadis A, Brossat X, Cugliari J, Poggi JM. Prevision d'un processus a valeurs fonctionnelles en presence de non stationnarites. application a la consommation d'electricite. Journal de la Societe Francaise de Statistique 2012;153(2):52{78.

    [2] Antoniadis A, Paparoditis E, Sapatinas T. A functional wavelet{kernel approach for time series prediction. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2006;68(5):837{57.

    [3] Besse P, Cardot H. Approximation spline de la prevision d'un processus fonctionnel autoregressif d'ordre 1. Canadian Journal of Statistics 1996;24(4):467{87.

    [4] Bosq D. Linear Processes in Function Spaces. Springer New York, 2000.

    [5] Cugliari J. Non parametric forecasting of functional-valued processes : application to the electricity load. Theses; Universite Paris Sud - Paris XI; 2011.

    [6] Cugliari J, Poggi JM. Electricity demand forecasting. In: An Hourly Periodic State Space Model for Modelling French. Wiley; 2018. .

    [7] Dordonnat V, Koopman S, Ooms M, Dessertaine A, Collet J. An hourly periodic state space model for modelling french national electricity load. International Journal of Forecasting 2008;24(4):566 {87. Energy Forecasting.

    [8] Dordonnat V, Koopman SJ, Ooms M. Dynamic factors in periodic time-varying regressions with an application to hourly electricity load modelling. Computational Statistics & Data Analysis 2012;56(11):3134 {52.

    [9] Durbin J, Koopman SJ. Time series analysis by state space methods. volume 38. OUP Oxford, 2012.

    [10] Guillas S. Doubly stochastic Hilbertian processes. Journal of Applied Probability 2002;39(3):566{80.

  • Metrics
    No metrics available
Share - Bookmark