publication . Preprint . Article . 2020

A note on unimodular $N=1, d=4$ AdS supergravity

Anero, Jesús; Pérez Martín, Carmelo; Santos García, Raquel;
Open Access English
  • Published: 01 Mar 2020
  • Country: Spain
We put forward a unimodular $N=1, d=4$ anti-de Sitter supergravity theory off shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime with radius given by the equation of motion of the auxiliary scalar field, ie, $S=\frac{3}{\kappa L}$. However, we see that the non-supersymmetric classical vacua of the unimodular theory are Minkowski and de Sitter spacetimes as well as anti-de Sitter spacetime with radius $l\neq L$.
arXiv: General Relativity and Quantum CosmologyHigh Energy Physics::TheoryHigh Energy Physics::Phenomenology
free text keywords: High Energy Physics - Theory, Física
Related Organizations
Funded by
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
33 references, page 1 of 3

[1] P. K. Townsend, Phys. Rev. D 15 (1977) 2802. doi:10.1103/PhysRevD.15.2802

[2] M. Ammon and J. Erdmenger, “Gauge/gravity duality : Foundations and applications,” Cambridge University Press, 2015.

[3] H. Nastase, “Introduction to the ADS/CFT Correspondence,”, Cambridge University Press, 2015

[4] J. J. van der Bij, H. van Dam and Y. J. Ng, Physica 116A (1982) 307. doi:10.1016/0378- 4371(82)90247-3

[5] W. Buchmuller and N. Dragon, Phys. Lett. B 207 (1988) 292. doi:10.1016/0370- 2693(88)90577-1

[6] W. Buchmuller and N. Dragon, Phys. Lett. B 223 (1989) 313. doi:10.1016/0370- 2693(89)91608-0

[7] M. Henneaux and C. Teitelboim, Phys. Lett. B 222 (1989) 195. doi:10.1016/0370- 2693(89)91251-3

[8] G. F. R. Ellis, H. van Elst, J. Murugan and J. P. Uzan, Class. Quant. Grav. 28 (2011) 225007 doi:10.1088/0264-9381/28/22/225007 [arXiv:1008.1196 [gr-qc]].

[9] G. F. R. Ellis, Gen. Rel. Grav. 46 (2014) 1619 doi:10.1007/s10714-013-1619-5 [arXiv:1306.3021 [gr-qc]].

[10] L. Smolin, Phys. Rev. D 80 (2009) 084003 doi:10.1103/PhysRevD.80.084003 [arXiv:0904.4841 [hep-th]].

[12] J. Kluson, Phys. Rev. D 91 (2015) no.6, 064058 doi:10.1103/PhysRevD.91.064058 [arXiv:1409.8014 [hep-th]].

[13] I. D. Saltas, Phys. Rev. D 90 (2014) no.12, 124052 doi:10.1103/PhysRevD.90.124052 [arXiv:1410.6163 [hep-th]].

[14] A. Eichhorn, JHEP 1504 (2015) 096 doi:10.1007/JHEP04(2015)096 [arXiv:1501.05848 [gr-qc]].

[15] E. A´lvarez, S. Gonz´alez-Mart´ın, M. Herrero-Valea and C. P. Mart´ın, JHEP 1508 (2015) 078 doi:10.1007/JHEP08(2015)078 [arXiv:1505.01995 [hep-th]].

[16] R. Bufalo, M. Oksanen and A. Tureanu, Eur. Phys. J. C 75 (2015) no.10, 477 doi:10.1140/epjc/s10052-015-3683-3 [arXiv:1505.04978 [hep-th]].

33 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue