Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes
 Publisher: Department of Pure Mathematics and Mathematical Statistics

Related identifiers: doi: 10.17863/CAM.16223 
Subject: Mathematical general relativity  Wave equations on black hole spacetimesarxiv: General Relativity and Quantum Cosmology
I study linear waves on higher dimensional Schwarzschild black holes and Schwarzschild
de Sitter spacetimes.
In the first part of this thesis two decay results are proven for general finite energy solutions to the linear wave equation on higher dimensional Schwarzschild black holes. I establish uniform energy decay and improved interior first order energy decay in all dimensions with rates in accordance with the 3 + 1dimensional case. The method of proof departs from earlier work on this problem. I apply and extend the new physical space approach to decay of Dafermos and Rodnianski. An integrated local energy decay estimate for the wave equation on higher dimensional Schwarzschild black holes is proven.
In the second part of this thesis the global study of solutions to the linear wave equation on expanding de Sitter and Schwarzschild de Sitter spacetimes is initiated. I show that finite energy solutions to the initial value problem are globally bounded and have a limit on the future boundary that can be viewed as a function on the standard cylinder.
Both problems are related to the Cauchy problem in General Relativity.
This work was supported by the Engineering and Physical Sciences Research Council, the Cambridge European Trust, and the European Research Council.

Similar Research Results
(6)

Metrics
0views in OpenAIRE0views in local repository193downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Apollo  IRUSUK 0 193
Share  Bookmark

 Download from

Cite this publication