publication . Article . Other literature type . 2018

Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting

Edivaldo De Oliveira; Edivaldo De Oliveira; Rafael Kretschmer; Rafael Kretschmer;
Open Access English
  • Published: 29 Mar 2018 Journal: Genes, volume 9, issue 4 (issn: 2073-4425, Copyright policy)
  • Publisher: MDPI AG
  • Country: United Kingdom
Abstract
In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar to most Avian species, with a large number of microchromosomes and a few pairs of macrochromosomes. We found polymorphisms in pairs 1 and 3, where homologues were submetace...
Subjects
free text keywords: avian genome, classical and molecular cytogenetics, sex chromosomes, avian cytotaxonomy, Review, Genetics(clinical), Genetics, lcsh:Genetics, lcsh:QH426-470, Leucopternis albicollis, biology.organism_classification, biology, Neoaves, Karyotype, Fluorescence in situ hybridization, medicine.diagnostic_test, medicine, Evolutionary biology, Phylogenetics, Microchromosome, DNA sequencing, Phylogenetic tree
Download fromView all 8 versions
Genes
Article . 2018
Apollo
Article . 2018
Provider: Apollo
Genes
Article . 2018
Provider: Crossref
100 references, page 1 of 7

1. Gill, F.; Donsker, D.; IOC World Bird List, (v 6.3). Donsker, D. Posted July 20, 2016. Available online: http://www.worldbirdnames.org/ (accessed on 16 January 2018).

2. Hackett, S.J.; Kimball, R.T.; Reddy, S.; Bowie, R.C.K.; Braun, E.L.; Braun, M.J.; Chojnowski, J.L.; Cox, W.A.; Han, K.L.; Harshman, J.; et al. A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320, 1763-1768. [CrossRef] [PubMed] [OpenAIRE]

3. Livezey, B.C.; Zusi, R.L. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc. 2007, 149, 1-95. [CrossRef] [PubMed] [OpenAIRE]

4. Jarvis, E.D.; Mirarab, S.; Aberer, A.J.; Li, B.; Houde, P.; Li, C.; Ho, S.Y.; Faircloth, B.C.; Nabholz, B.; Howard, J.T.; et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014, 346, 1320-1331. [CrossRef] [PubMed] [OpenAIRE]

5. Prum, R.O.; Berv, J.S.; Dornburg, A.; Field, D.J.; Townsend, J.P.; Lemmon, E.M.; Lemmon, A.R. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 2015, 526, 569-573. [CrossRef] [PubMed] [OpenAIRE]

6. Pfenning, A.R.; Hara, E.; Whitney, O.; Rivas, M.V.; Wang, R.; Roulhac, P.L.; Howard, J.T.; Wirthlin, M.; Lovell, P.V. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 2014, 346. [CrossRef] [PubMed] [OpenAIRE]

7. Zhou, Q.; Zhang, J.; Bachtrog, D.; An, N.; Huang, Q.; Jarvis, E.D.; Gilbert, M.T.; Zhang, G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 2014, 346. [CrossRef] [PubMed] [OpenAIRE]

8. Frankl-Vilches, C.; Kuhl, H.; Werber, M.; Klages, S.; Kerick, M.; Bakker, A.; de Oliveira, E.H.C.; Reusch, C.; Capuano, F.; Vowinckel, J.; et al. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol. 2015, 16, 19. [CrossRef] [PubMed] [OpenAIRE]

9. Blanco, G.; Hiraldo, F.; Rojas, A.; Denes, F.V.; Tella, J.L. Parrots as key multilinkers in ecosystem structure and functioning. Ecol. Evol. 2015, 5, 4141-4160. [CrossRef] [PubMed] [OpenAIRE]

10. Gregory, T.R. The Animal Genome Size Database. Available online: http://www.genomesize.com (accessed on 26 December 2017).

11. Kasai, F.; O'Brien, P.C.M.; Ferguson-Smith, MA. Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: Close similarity to chicken. Biol. Lett. 2012, 8, 631-635. [CrossRef] [PubMed]

12. Primmer, C.R.; Raudsepp, T.; Chowdhary, B.P.; Moller, A.P.; Ellegren, H. Low frequency of microsatellites in the avian genome. Genome Res. 1997, 7, 471-482. [CrossRef] [PubMed]

13. Zhang, G.; Li, C.; Li, Q.; Li, B.; Larkin, D.M.; Lee, C.; Storz, J.F.; Antunes, A.; Greenwold, M.J. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014, 346, 1311-1320. [CrossRef] [PubMed]

14. Waltari, E.; Edwards, S.V. Evolutionary dynamics of intron size, genome size, and physiological correlates in archosaurs. Am. Nat. 2002, 160, 539-552. [CrossRef] [PubMed] [OpenAIRE]

15. Smith, J.; Burt, D.W. Parameters of the chicken genome (Gallus gallus). Anim. Genet. 1998, 29, 290-294. [CrossRef] [PubMed]

100 references, page 1 of 7
Abstract
In this work we performed comparative chromosome painting using probes from Gallus gallus (GGA) Linnaeus, 1758 and Leucopternis albicollis (LAL) Latham, 1790 in Synallaxis frontalis Pelzeln, 1859 (Passeriformes, Furnariidae), an exclusively Neotropical species, in order to analyze whether the complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) proposed for Oscines and Suboscines is shared with more basal species. S. frontalis has 82 chromosomes, similar to most Avian species, with a large number of microchromosomes and a few pairs of macrochromosomes. We found polymorphisms in pairs 1 and 3, where homologues were submetace...
Subjects
free text keywords: avian genome, classical and molecular cytogenetics, sex chromosomes, avian cytotaxonomy, Review, Genetics(clinical), Genetics, lcsh:Genetics, lcsh:QH426-470, Leucopternis albicollis, biology.organism_classification, biology, Neoaves, Karyotype, Fluorescence in situ hybridization, medicine.diagnostic_test, medicine, Evolutionary biology, Phylogenetics, Microchromosome, DNA sequencing, Phylogenetic tree
Download fromView all 8 versions
Genes
Article . 2018
Apollo
Article . 2018
Provider: Apollo
Genes
Article . 2018
Provider: Crossref
100 references, page 1 of 7

1. Gill, F.; Donsker, D.; IOC World Bird List, (v 6.3). Donsker, D. Posted July 20, 2016. Available online: http://www.worldbirdnames.org/ (accessed on 16 January 2018).

2. Hackett, S.J.; Kimball, R.T.; Reddy, S.; Bowie, R.C.K.; Braun, E.L.; Braun, M.J.; Chojnowski, J.L.; Cox, W.A.; Han, K.L.; Harshman, J.; et al. A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320, 1763-1768. [CrossRef] [PubMed] [OpenAIRE]

3. Livezey, B.C.; Zusi, R.L. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc. 2007, 149, 1-95. [CrossRef] [PubMed] [OpenAIRE]

4. Jarvis, E.D.; Mirarab, S.; Aberer, A.J.; Li, B.; Houde, P.; Li, C.; Ho, S.Y.; Faircloth, B.C.; Nabholz, B.; Howard, J.T.; et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 2014, 346, 1320-1331. [CrossRef] [PubMed] [OpenAIRE]

5. Prum, R.O.; Berv, J.S.; Dornburg, A.; Field, D.J.; Townsend, J.P.; Lemmon, E.M.; Lemmon, A.R. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 2015, 526, 569-573. [CrossRef] [PubMed] [OpenAIRE]

6. Pfenning, A.R.; Hara, E.; Whitney, O.; Rivas, M.V.; Wang, R.; Roulhac, P.L.; Howard, J.T.; Wirthlin, M.; Lovell, P.V. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 2014, 346. [CrossRef] [PubMed] [OpenAIRE]

7. Zhou, Q.; Zhang, J.; Bachtrog, D.; An, N.; Huang, Q.; Jarvis, E.D.; Gilbert, M.T.; Zhang, G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 2014, 346. [CrossRef] [PubMed] [OpenAIRE]

8. Frankl-Vilches, C.; Kuhl, H.; Werber, M.; Klages, S.; Kerick, M.; Bakker, A.; de Oliveira, E.H.C.; Reusch, C.; Capuano, F.; Vowinckel, J.; et al. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol. 2015, 16, 19. [CrossRef] [PubMed] [OpenAIRE]

9. Blanco, G.; Hiraldo, F.; Rojas, A.; Denes, F.V.; Tella, J.L. Parrots as key multilinkers in ecosystem structure and functioning. Ecol. Evol. 2015, 5, 4141-4160. [CrossRef] [PubMed] [OpenAIRE]

10. Gregory, T.R. The Animal Genome Size Database. Available online: http://www.genomesize.com (accessed on 26 December 2017).

11. Kasai, F.; O'Brien, P.C.M.; Ferguson-Smith, MA. Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: Close similarity to chicken. Biol. Lett. 2012, 8, 631-635. [CrossRef] [PubMed]

12. Primmer, C.R.; Raudsepp, T.; Chowdhary, B.P.; Moller, A.P.; Ellegren, H. Low frequency of microsatellites in the avian genome. Genome Res. 1997, 7, 471-482. [CrossRef] [PubMed]

13. Zhang, G.; Li, C.; Li, Q.; Li, B.; Larkin, D.M.; Lee, C.; Storz, J.F.; Antunes, A.; Greenwold, M.J. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014, 346, 1311-1320. [CrossRef] [PubMed]

14. Waltari, E.; Edwards, S.V. Evolutionary dynamics of intron size, genome size, and physiological correlates in archosaurs. Am. Nat. 2002, 160, 539-552. [CrossRef] [PubMed] [OpenAIRE]

15. Smith, J.; Burt, D.W. Parameters of the chicken genome (Gallus gallus). Anim. Genet. 1998, 29, 290-294. [CrossRef] [PubMed]

100 references, page 1 of 7
Any information missing or wrong?Report an Issue