Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GraFar - Repository ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Semi-Analytical (Inertial) Solution for Determining Permeability of Highly Pervious Porous Materials Using the Two-Reservoir Laboratory Setup

Authors: Stanić, Filip; Govedarica, Ognjen; Jaćimović, Nenad; Lekić, Branislava; Ranđelović, Anja;

A Novel Semi-Analytical (Inertial) Solution for Determining Permeability of Highly Pervious Porous Materials Using the Two-Reservoir Laboratory Setup

Abstract

Two conventional experimental procedures for determination of the water permeability of saturated porous medium are the constant and the falling head permeability tests. The first one is more applicable on more permeable materials where the outflow from the sample is measured at variety of constant water heads, while the second one is more convenient for low permeable materials, utilizing the continuous measurements of the water head falling due to filtration through the saturated sample. However, neither of the two is useful for materials of high permeability and large cross-sectional area. The constant head permeability test faces technical issues since a significant and continuous water discharge is required, while the falling head permeability test has limitations due to neglection of the Forchheimer's high-velocity flow through the sample, but also the influence of inertia on the fluid mass. Here we proposed an approach for determination of the water permeability of saturated porous medium based on the agreement between the measured water level change in two connected reservoirs containing a porous sample and the new semi-analytical expression describing that change by accounting for the mentioned theoretical deficiencies. This efficient approach has been tested on four pervious paver samples, and results showed satisfactory agreement with the constant head permeability data. It has been also confirmed the proposed semi-analytical solution is more accurate than the falling head permeability approach in case of highly pervious materials, while for low permeable materials it reduces to the conventional approach.

Country
Serbia
Keywords

saturated porous medium, momentum conservation, inertia, Forchheimer's law, hydraulic conductivity, pervious paver

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by