An impulsive modelling framework of fire occurrence in a size-structured model of tree–grass interactions for savanna ecosystems

Article, Other literature type, Preprint English OPEN
Yatat, Valaire; Couteron, Pierre; Tewa, Jean Jules; Bowong, Samuel; Dumont, Yves; (2017)
  • Related identifiers: doi: 10.1007/s00285-016-1060-y
  • Subject: écosystème forestier | Écosystème | Forêt | Incendie spontané | | 34A37, 92B05, 65L05 | Modèle mathématique | | | | Compétition végétale | | Savanna | Arbre forestier | Fire | Analyse quantitative | | K01 - Foresterie - Considérations générales | Pâturages | Méthode statistique | Écologie | | U10 - Méthodes mathématiques et statistiques | | Incendie de forêt | Impulsive differential equation | | Mathematics - Dynamical Systems | Nonstandard finite difference scheme | Classification | | F40 - Ecologie végétale | | Qualitative analysis | | | Savane | Asymmetric competition | |

Fires and mean annual rainfall are major factors that regulate woody and grassy biomasses in savanna ecosystems. Within the savanna biome, conditions of long-lasting coexistence of trees and grasses have been often studied using continuous-time modelling of tree–grass c... View more
  • References (52)
    52 references, page 1 of 6

    [1] L. Abbadie, J. Gignoux, X. Le Roux and M. Lepage, Lamto: structure, functioning, and dynamics of a Savanna Ecosystem. Eco. Stu. Spinger, 2006.

    [2] F. Accatino and C. De Michele, Humid savanna-forest dynamics: a matrix model with vegetation-fire interactions and seasonality. Eco. Mod. 265, pp. 170-179, 2013.

    [3] F. Accatino, C. De Michele, R. Vezzoli, D. Donzelli and R. Scholes, Tree-grass coexistence in savanna: interactions of rain and fire.J. Theor. Biol. 267, pp. 235-242, 2010.

    [4] R. Anguelov, Y. Dumont and J.M.-S. Lubuma, On nonstandard finite difference schemes in biosciences. AIP Conf. Proc. 1487, pp. 212-223, 2012.

    [5] R. Anguelov, Y. Dumont, J.M.-S. Lubuma and E. Mureithi, Stability Analysis and Dynamics Preserving Non-Standar Finite Difference Schemes for Malaria Model, Mathematical Population Studies, 20 (2), pp. 101-122, 2013.

    [6] R. Anguelov, Y. Dumont, J.M.-S. Lubuma and M. Shillor, Dynamically consistent nonstandard finite difference schemes for epidemiological Models. Journal of Computational and Applied Mathematics, 255, pp. 161-182, 2014.

    [7] P. Augier, C. Lett and J.C. Poggiale, Mod´elisation math´ematique en ´ecologie. Cours et exercices corrig´es. Dunod, Paris, 2010.

    [8] D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations: Asymptotic properties of the solutions. World scientific publishing Co. 1995.

    [9] N. Barbier, P. Couteron, R. Lefever, V. Deblauwe and O. Lejeune, Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns. Ecol. 89, pp. 1521-1531, 2008.

    [10] M. Baudena, F. D'Andrea and A. Provenzale, An idealized model for tree-grass coexistence in savannas: the role of life stage structure and fire disturbances. J. Ecol. 98, pp. 74-80, 2010.

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark