Hyperarbres et Partitions semi-pointées : Aspects combinatoires, algébriques et homologiques

Doctoral thesis French OPEN
Delcroix-Oger , Bérénice;
(2014)
  • Publisher: HAL CCSD
  • Subject: Hypertree | homology | Cohen-Macaulay | Hyperarbre | Cohen-Macaulayness | action du groupe symétrique | espèce | algèbre de Hopf d'incidence | action of the symmetric group | [ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO] | homologie | partition | species | incidence Hopf algebra | [ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM] | poset
    arxiv: Mathematics::Combinatorics

This thesis is dedicated to the combinatorial, algebraic and homological study of hypertrees and semi-pointed partitions. More precisely, we study algebraic and homological structures built from hypertrees and semi-pointed partitions, which occur naturally in our study.... View more
Share - Bookmark

  • Download from
    HAL-Lyon 3 via HAL-Lyon 3 (Doctoral thesis, 2014)
  • Cite this publication