Diffusion models for mixtures using a stiff dissipative hyperbolic formalism

Article, Preprint English OPEN
Boudin , Laurent; Grec , Bérénice; Pavan , Vincent;
(2019)
  • Publisher: World Scientific Publishing
  • Related identifiers: doi: 10.1142/S0219891619500115
  • Subject: [ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] | [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]

International audience; In this article, we are interested in a system of fluid equations for mixtures with a stiff relaxation term of Maxwell-Stefan diffusion type. We use the formalism developed by Chen, Levermore, Liu in [4] to obtain a limit system of Fick type wher... View more
  • References (13)
    13 references, page 1 of 2

    [1] D. Bothe. On the Maxwell-Stefan approach to multicomponent diusion. In Parabolic problems, volume 80 of Progr. Nonlinear Dierential Equations Appl. , pages 8193. Birkhuser/Springer Basel AG, Basel, 2011.

    [2] L. Boudin, B. Grec, and V. Pavan. The Maxwell-Stefan diusion limit for a kinetic model of mixtures with general cross sections. Nonlinear Anal., 159:4061, 2017.

    [3] L. Boudin, B. Grec, and F. Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diusion equations. Discrete Contin. Dyn. Syst. Ser. B , 17(5):14271440, 2012.

    [4] G. Q. Chen, C. D. Levermore, and T.-P. Liu. Hyperbolic conservation laws with sti relaxation terms and entropy. Comm. Pure Appl. Math., 47(6):787830, 1994.

    [5] V. Giovangigli. Multicomponent ow modeling . Modeling and Simulation in Science, Engineering and Technology. Birkhuser Boston Inc., Boston, MA, 1999.

    [6] V. Giovangigli and L. Matuszewski. Structure of entropies in dissipative multicomponent uids. Kinet. Relat. Models, 6(2):373406, 2013.

    [7] A. Jngel and I. V. Stelzer. Existence analysis of Maxwell-Stefan systems for multicomponent mixtures. SIAM J. Math. Anal., 45(4):24212440, 2013.

    [8] S. Kawashima and W.-A. Yong. Dissipative structure and entropy for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal., 174(3):345364, 2004.

    [9] R. Krishna and J. A. Wesselingh. The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci., 52(6):861911, 1997.

    [10] F. Williams. Combustion Theory. Benjamin Cummings, second edition edition, 1985.

  • Metrics
Share - Bookmark