publication . Article . 2012

Simultaneous environmental manipulations in semi-perfusion cultures of CHO cells producing rh-tPA

Mauricio Vergara; Silvana Becerra; Alvaro Díaz-Barrera; Julio Berrios; Claudia Altamirano;
Open Access
  • Published: 01 Nov 2012 Journal: Electronic Journal of Biotechnology, volume 15 (issn: 0717-3458, eissn: 0717-3458, Copyright policy)
  • Publisher: Elsevier BV
  • Country: Chile
We evaluated the combined effect of decreasing the temperature to a mild hypothermia range (34 and 31ºC) and switching to a slowly metabolizable carbon source (glucose substituted by galactose) on the growth and production of a recombinant human tissue plasminogen activator (rh-tPA) by Chinese hamster ovary cells in batch and semi-perfusion cultures. In batch cultures using glucose as a carbon source, decreasing the temperature caused a reduction in cell growth and an increase in specific productivity of rh-tPA of 32% at 34ºC and 55% at 31ºC, compared to cultures at 37ºC. Similar behaviour was observed in cultures at 34ºC using galactose as a carbon source. None...
Persistent Identifiers
free text keywords: Biotechnology, Applied Microbiology and Biotechnology, CHO cells, glutamate, low temperature, rh-tPA, Biochemistry, Perfusion Culture, Recombinant DNA, law.invention, law, Mild hypothermia, Chinese hamster ovary cell, Perfusion, Chemistry, Galactose, chemistry.chemical_compound, Tissue plasminogen activator, medicine.drug, medicine, Glutamate receptor
34 references, page 1 of 3

AL-FAGEEH, M.; MARCHANT, R.; CARDEN, M. and SMALES, C. (2006). The cold-shock response in cultured mammalian cells: Harnessing the response for the improvement of recombinant protein production. Biotechnology and Bioengineering, vol. 93, no. 5, p. 829-835. [CrossRef] [OpenAIRE]

ALTAMIRANO, C.; PAREDES, C.; CAIRÓ, J. and GÒDIA, F. (2000). Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine. Biotechnology Progress, vol. 16, no. 1, p. 69-75. [CrossRef]

ALTAMIRANO, C.; CAIRÓ, J. and GÒDIA, F. (2001). Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnology and Bioengineering, vol. 76, no. 4, p. 351-360. [CrossRef]

ALTAMIRANO, C.; ILLANES, A.; CANESSA, R. and BECERRA, S. (2006). Specific nutrient supplementation of defined serum-free medium for the improvement of CHO cells growth and t-PA production. Electronic Journal of Biotechnology, vol. 9, no. 1, p. 61-67. [CrossRef] [OpenAIRE]

BAIK, J.K.; LEE, M.S.; AN, S.R.; YOON, S.K.; JOO, E.J.; KIM, Y.H.; PARK, H.W. and LEE, G.M. (2006). Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnology and Bioengineering, vol. 93, no. 2, p. 361-371. [CrossRef]

BARNES, L. and DICKSON, A. (2006). Mammalian cell factories for efficient and stable protein expression. Current Opinion in Biotechnology, vol. 17, no. 4, p. 381-386. [CrossRef]

BECERRA, S.; BERRIOS, J.; OSSES, N. and ALTAMIRANO, C. (2012). Exploring the effect of mild hypothermia on CHO cell productivity. Biochemical Engineering Journal, vol. 60, p. 1-8. [CrossRef]

BERRIOS, J.; DÍAZ-BARRERA, A.; BAZÁN, C. and ALTAMIRANO, C. (2009). Relationship between tissue plasminogen activator production and specific growth rate in Chinese hamster ovary cells cultured in mannose at low temperature. Biotechnology Letters, vol. 31, no. 10, p. 1493-1497. [CrossRef]

BERRIOS, J.; ALTAMIRANO C.; OSSES, N. and GONZALEZ, R. (2011). Continuous CHO cell cultures with improved recombinant protein productivity by using mannose as carbon source: Metabolic analysis and scale-up simulation. Chemical Engineering Science, vol. 66, no. 11, p. 2431-2439. [CrossRef]

BI, J.; SHUTTLEWORTH, J. and AL-RUBEAI, M. (2004). Uncoupling of cell growth and proliferation results in enhancement of productivity in p21Cip1-arrested CHO cells. Biotechnology and Bioengineering, vol. 85, no. 7, p. 741-749. [CrossRef]

BOLLATI-FOGOLÍN, M.; WAGNER, R.; ETCHEVERRIGARAY, M. and KRATJE, R. (2004). Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF producing CHO cells. Journal of Biotechnology, vol. 109, no. 1-2, p. 179-191. [CrossRef]

BOLLATI-FOGOLÍN, M.; FORNO, G.; NIMTZ, M.; CONRADT, H.S.; ETCHEVERRIGARAY, M. and KRATJE, R. (2005). Temperature reduction in cultures of hGM-CSF-expressing CHO cells: Effect on productivity and product quality. Biotechnology Progress, vol. 21, no. 1, p. 17-21. [CrossRef]

FOX, S.; PATEL, U.; YAP, M. and WANG, D. (2004). Maximizing interferon-γ production by Chinese hamster ovary cells through temperature shift optimization: Experimental and modeling. Biotechnology and Bioengineering, vol. 85, no. 2, p. 177-184. [CrossRef]

GOULART, H.R.; ARTHUSO, F.S.; CAPONE, M.V.N.; OLIVEIRA, T.L.; BARTOLINI, P. and SOARES, C.R.J. (2010). Enhancement of human prolactin synthesis by sodium butyrate addition to serum-free CHO cell culture. Journal of Biomedicine and Biotechnology, vol. 2010, p. 1-11. [CrossRef]

HAN, Y.; KOO, T. and LEE, G. (2009). Enhanced interferon-β production by CHO cells through elevated osmolality and reduced culture temperature. Biotechnology Progress, vol. 25, no. 5, p. 1440-1447. [CrossRef]

34 references, page 1 of 3
Any information missing or wrong?Report an Issue