publication . Article . 2013

Modelo Analítico del Comportamiento a Compresión de Bloques Huecos de Concreto

John Mario Garcia Giraldo; Ricardo Leon Bonett Diaz; Christian Ledezma Araya;
Open Access Spanish
  • Published: 01 Dec 2013
  • Publisher: Escuela de Construcción Civil, Pontificia Universidad Católica de Chile
  • Country: Chile
Abstract
El desempeño estructural de la albañilería está relacionado directamente con las propiedades mecánicas de sus materiales constituyentes. Uno de los principales parámetros que controlan el comportamiento de este sistema, es la resistencia a la compresión de la unidad. Sin embargo, para la modelación numérica de la albañilería se emplean modelos simplificados elásticos-lineales recomendados por los códigos de diseño, los cuales no permiten establecer adecuadamente el comportamiento real de este material, generando altas incertidumbres en sus desplazamientos. Los métodos modernos de diseño se basan en el control de desplazamientos, siendo ésta una de las principale...
Subjects
free text keywords: Stress-strain curve, Compressive strength, Modulus of elasticity, Hollow concrete block, Masonry, Physics, Humanities
17 references, page 1 of 2

ACI 530-05/ASCE 5-05/TMS 402-05 (2005) American Concrete Institute. Building Code Requirements for Masonry Structures. Detroit, Estados Unidos.

Asociación Colombiana de Ingeniería Sísmica. (2010). Normas Colombianas de Diseño y Construcción Sismo Resistente NSR-10. Bogotá, Colombia.

Barbosa, C. S., & Hanai, J. B. (2006). Resistência e deformabilidade de blocos vazados de concreto e suas correlações com as propriedades mecânicas do material constituinte. Cadernos de Engenharia de Estruturas, 8(34), 45-74.

Barbosa, C. S., & Hanai, J. B. (2009). Strength and deformability of hollow concrete blocks: correlation of block and cylindrical sample test results. Ibracon Structures and Materials Journal, 2(1), 85-99.

Drysdale, R. G., Hamid, A. A., & Baker, L. R. (1994). Masonry structures: behavior and design. New Jersey: Prentice Hall.

Haach, V. G., Vasconcelos, G., Lourenço, P. B., & Mohamad, G. (2010). Influence of the mortar on the compressive behavior of concrete masonry prisms. Revista da Associação Portuguesa de Análise Experimental de Tensões, Vol18, 79-84.

Hognestad, E. (1951). Study of combined bending and axial load in reinforced concrete Members. Illinois, The reinforce d concrete research council of the engineering foundation.

ICONTEC. (2001). Prefabricados de concreto: Muestreo y ensayo de prefabricados de concreto no reforzados, vibrocompactados NTC 4024. Bogotá, Colombia.

Jaafar, M. S., Thanoon, W. A., Najm, A., Abdulkadir, M. R., & Abang, A. A. (2006). Strength correlation between individual block, prism and basic wall panel for load bearing interlocking mortarless hollow block masonry. Construction and Building Materials, 20(7), 492-498.

Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of Materials in Civil Engineering, 19(9), 728-739.

Mohamad, A., Farid, B. J., & Al-Janabi, A.I.M. (1990). Stress-Strain Relationship for concrete in compression made of local materials. JKAU: Eng. Sci, Vol2, 183-194.

NTC 4026. (1997). Ingeniería Civil y Arquitectura. Unidades (Bloques y Ladrillos) de concreto, para albañilería estructural. Norma Técnica Colombiana. Bogotá, Colombia.

Nwofor, T. C. (2012). Experimental determination of the mechanical properties of clay brick masonry. Canadian Journal on Environmental, Construction and Civil Engineering, 3(3), 127- 145.

Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. Cem. Concr. Res, 3(5), 583-599. [OpenAIRE]

Sargin, M., Ghosh, S. K., & Handa, V. K. (1971). Effect of lateral reinforcement upon the strength and deformation properties of concrete. Mag. Concrete Res, 23(75-76), 99- 110.

17 references, page 1 of 2
Any information missing or wrong?Report an Issue