
Представлены принципы автоматизированного формирования графической и физической моделей турбогенераторов на алгоритмическом языке Lua для расчета их магнитных полей и параметров в программной среде пакета FEMM. Возможности составленного скрипта Lua демонстрируются на примере реального турбогенератора. Attention is paid to the popular FEMM (Finite Element Method Magnetics) program which is effective in the numerical calculations of the magnetic fields of electrical machines. The main problem of its using - high costs in time on the formation of a graphical model representing the design and on the formation of the physical model representing the materials properties and the winding currents of machines – is solved. For this purpose, principles of the automated formation of such models are developed and presented on the turbogenerator example. The task is performed by a program written in an algorithmic language Lua integrated into the package FEMM. The program is universal in terms of varying the geometry and dimensions of the designed turbogenerators. It uses a minimum of input information in a digital form representing the design of the whole turbogenerator and its fragments. A general structure of the Lua script is provided, significant parts of its text, the graphic results of work's phases, as well as explanations of the program and instructions for its use are given. Performance capabilities of the compiled Lua script are shown on the example of the real 340 MW turbogenerator.
Lua скрипт, turbogenerator, программа FEMM, турбогенераторы, автоматизированное формирование, Lua script, automated formation, метод конечных элементов, Finite Element Method, расчеты магнитных полей, program FEMM
Lua скрипт, turbogenerator, программа FEMM, турбогенераторы, автоматизированное формирование, Lua script, automated formation, метод конечных элементов, Finite Element Method, расчеты магнитных полей, program FEMM
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
