publication . Article . 2019

Baryogenesis and dark matter from B mesons

Elor, Gilly; Escudero, Miguel; Nelson, Ann E.;
Open Access English
  • Published: 20 Feb 2019
  • Publisher: APS
Abstract
We present a new mechanism of baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral <math><mi>B</mi></math> meson oscillations and subsequent decays. This setup is testable at hadron colliders and <math><mi>B</mi></math> factories. In the early universe, decays of a long lived particle produce <math><mi>B</mi></math> mesons and antimesons out of thermal equilibrium. These mesons/antimesons then undergo <math><mi>C</mi><mi>P</mi></math> violating oscillations before quickly decaying into visible and dark sector particles. Dark matter will be charged under the baryon number so that the vis...
Subjects
arXiv: High Energy Physics::ExperimentHigh Energy Physics::PhenomenologyAstrophysics::Cosmology and Extragalactic AstrophysicsNuclear TheoryNuclear Experiment
Related Organizations
Funded by
EC| DARKHORIZONS
Project
DARKHORIZONS
Dark Matter and the Early Universe in the LHC Era
  • Funder: European Commission (EC)
  • Project Code: 648680
  • Funding stream: H2020 | ERC | ERC-COG
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
Download from
63 references, page 1 of 5

[1] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016).

[2] N. Aghanim et al. (Planck Collaboration), arXiv: 1807.06209.

[3] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh, Rev. Mod. Phys. 88, 015004 (2016).

[4] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

[5] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967); Usp. Fiz. Nauk. 161, 61 (1991).

[6] S. Nussinov, Phys. Lett. 165B, 55 (1985).

[7] S. Dodelson and L. M. Widrow, Phys. Rev. D 42, 326 (1990).

[8] S. M. Barr, R. S. Chivukula, and E. Farhi, Phys. Lett. B 241, 387 (1990).

[9] D. B. Kaplan, Phys. Rev. Lett. 68, 741 (1992).

[10] G. R. Farrar and G. Zaharijas, Phys. Rev. Lett. 96, 041302 (2006).

[11] D. E. Kaplan, M. A. Luty, and K. M. Zurek, Phys. Rev. D 79, 115016 (2009).

[12] Y. Grossman, Y. Nir, and R. Rattazzi, Adv. Ser. Dir. High Energy Phys. 15, 755 (1998); 10755 (1997).

[13] K. Agashe and G. Servant, J. Cosmol. Astropart. Phys. 02 (2005) 002.

[14] H. Davoudiasl, D. E. Morrissey, K. Sigurdson, and S. Tulin, Phys. Rev. Lett. 105, 211304 (2010).

[15] M. Artuso, G. Borissov, and A. Lenz, Rev. Mod. Phys. 88, 045002 (2016).

63 references, page 1 of 5
Abstract
We present a new mechanism of baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral <math><mi>B</mi></math> meson oscillations and subsequent decays. This setup is testable at hadron colliders and <math><mi>B</mi></math> factories. In the early universe, decays of a long lived particle produce <math><mi>B</mi></math> mesons and antimesons out of thermal equilibrium. These mesons/antimesons then undergo <math><mi>C</mi><mi>P</mi></math> violating oscillations before quickly decaying into visible and dark sector particles. Dark matter will be charged under the baryon number so that the vis...
Subjects
arXiv: High Energy Physics::ExperimentHigh Energy Physics::PhenomenologyAstrophysics::Cosmology and Extragalactic AstrophysicsNuclear TheoryNuclear Experiment
Related Organizations
Funded by
EC| DARKHORIZONS
Project
DARKHORIZONS
Dark Matter and the Early Universe in the LHC Era
  • Funder: European Commission (EC)
  • Project Code: 648680
  • Funding stream: H2020 | ERC | ERC-COG
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
Download from
63 references, page 1 of 5

[1] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016).

[2] N. Aghanim et al. (Planck Collaboration), arXiv: 1807.06209.

[3] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh, Rev. Mod. Phys. 88, 015004 (2016).

[4] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

[5] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967); Usp. Fiz. Nauk. 161, 61 (1991).

[6] S. Nussinov, Phys. Lett. 165B, 55 (1985).

[7] S. Dodelson and L. M. Widrow, Phys. Rev. D 42, 326 (1990).

[8] S. M. Barr, R. S. Chivukula, and E. Farhi, Phys. Lett. B 241, 387 (1990).

[9] D. B. Kaplan, Phys. Rev. Lett. 68, 741 (1992).

[10] G. R. Farrar and G. Zaharijas, Phys. Rev. Lett. 96, 041302 (2006).

[11] D. E. Kaplan, M. A. Luty, and K. M. Zurek, Phys. Rev. D 79, 115016 (2009).

[12] Y. Grossman, Y. Nir, and R. Rattazzi, Adv. Ser. Dir. High Energy Phys. 15, 755 (1998); 10755 (1997).

[13] K. Agashe and G. Servant, J. Cosmol. Astropart. Phys. 02 (2005) 002.

[14] H. Davoudiasl, D. E. Morrissey, K. Sigurdson, and S. Tulin, Phys. Rev. Lett. 105, 211304 (2010).

[15] M. Artuso, G. Borissov, and A. Lenz, Rev. Mod. Phys. 88, 045002 (2016).

63 references, page 1 of 5
Any information missing or wrong?Report an Issue