Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://cyberleninka....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Модернизация распределений Пирсона для аппроксимации двухсторонних законов распределения экспериментальных данных

Модернизация распределений Пирсона для аппроксимации двухсторонних законов распределения экспериментальных данных

Abstract

Актуальность работы обусловлена необходимостью повышения точности и упрощения процедуры аппроксимации двухсторонних законов распределения экспериментальных данных. Цель работы: модернизация метода Пирсона, которая позволяет устранить ряд его недостатков и упростить процедуру аппроксимации двухсторонних законов распределения экспериментальных данных, принимающих как положительные, так и отрицательные значения. Методы исследования: расчеты с использованием методов теории вероятностей и математической статистики, а также программного продукта MathCAD; методы интегрального и дифференциального исчисления. Результаты: Предложена модернизация распределений Пирсона для аппроксимации законов распределения экспериментальных данных, принимающих положительные и отрицательные значения, которая позволяет значительно упростить процедуру аппроксимации. Разработана топографическая классификация модернизированных распределений Пирсона с использованием совместного коэффициента асимметрии и эксцесса вместо коэффициента эксцесса. Приведены формулы для расчета числовых характеристик модернизированных распределений Пирсона.

The urgency of the issue is caused by needs of improving the accuracy and simplifying the approximation of experimental data laws for bilateral distribution. The main aim of the study: modernization of the Pearson method, which eliminates some of its disadvantages and simplifies the procedure for approximation of bilateral distribution laws of experimental data, taking both positive and negative values. The methods used in the study: calculations using the methods of probability theory and statistics, as well as the software MathCAD; methods of integral and differential calculus. The results: The authors have proposed the modernized Pearson distributions to approximate distribution laws of experimental data, taking positive and negative values, which can significantly simplify the procedure of approximation. Topographic classification of modernized Pearson distributions with use of coefficient of joint asymmetry and excess kurtosis instead of coefficient of excess is designed. The paper introduces the formulas for calculating numerical characteristics of the modernized Pearson distributions.

Keywords

РАСПРЕДЕЛЕНИЯ ПИРСОНА, АППРОКСИМАЦИЯ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ, ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ, КЛАССИФИКАЦИЯ РАСПРЕДЕЛЕНИЙ, СОВМЕСТНЫЙ КОЭФФИЦИЕНТ АСИММЕТРИИ И ЭКСЦЕССА

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average